Combinatorica

, Volume 3, Issue 3–4, pp 331–339

On functions of strengtht

  • M. Deza
  • P. Frankl
  • N. M. Singhi
Article

Abstract

For a finite setX, a functionf:P(X) →Z is said to have strengtht if\(\sum\limits_{A\underline{\underline \subset } B} {f(B) = 0} \) for allAP (X), |A|≦t. Supports of functions of strengtht define a matroid onP(X). We study the circuits in this matroid. Some other related problems are also discussed.

AMS subject classification (1980)

05 B 35 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    A. Blokhuis andN. M. Singhi, Bounds on sets with few distances modulo a prime number in metric spaces of strengtht, Memorandum 1981–16 of Eindhoven University of Technology.Google Scholar
  2. [2]
    M. Deza, Isometries of hypergraphs,Proc. Symposium on Graph Theory (Calcutta, 1976), ISI Lecture Notes 4, (ed. A. R. Rao) McMillan India, 1979, 174–189.Google Scholar
  3. [3]
    M. Deza andP. Frankl, On the vector space of 0-configurations,Combinatorica 2 (1982), 341–345.MATHMathSciNetGoogle Scholar
  4. [4]
    P. Frankl andR. M. Wilson, Intersection theorems with geometric consequences,Combinatorica 1 (1981), 357–368.MATHMathSciNetGoogle Scholar
  5. [5]
    P. Frankl andN. M. Singhi, Linear dependencies among subsets of a finite set,European J. of Combinatorics, to appear.Google Scholar
  6. [6]
    P. Frankl andJ. Pach, On the number of sets in a nullt-design.European J. of Combinatorics 4 (1983), 21–23.MATHMathSciNetGoogle Scholar
  7. [7]
    P. Frankl andZ. Füredi, On hypergraphs without two edges intersecting in a given number of vertices,J. Combinatorial Th., Ser. A, (1983), to appear.Google Scholar
  8. [8]
    R. L. Graham andS-Y. R. Li andW-W. W. Li, On the structure oft-designs,SIAM J. Alg. Disc. Methods 1 (1980), 8–14.MATHMathSciNetGoogle Scholar
  9. [9]
    R. L. Graham, Personal communication, 1982.Google Scholar
  10. [10]
    J. B. Graver andW. B. Jurkat, Algebra structures for general designs,J. Algebra 23 (1972), 574–589.MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    J. B. Graver andW. B. Jurkat, The module structure of integral designs,J. of Comb. Theory (A) 15 (1973), 75–90.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    D. K. Ray Chaudhuri andR. M. Wilson, Ont-designs,Osaka J. Math. 12 (1975), 737–744.MATHMathSciNetGoogle Scholar
  13. [13]
    R. M. Wilson, The necessary conditions fort-designs are sufficient for something,Utilitas Mathematica 4 (1973), 207–215.MATHMathSciNetGoogle Scholar
  14. [14]
    W. T. Tutte, Introduction to the theory of matroids,Amer. Elsevier, New-Yok, 1971.MATHGoogle Scholar

Copyright information

© Akadémiai Kiadó 1983

Authors and Affiliations

  • M. Deza
    • 1
  • P. Frankl
    • 1
  • N. M. Singhi
    • 2
  1. 1.C.N.R.S.ParisFrance
  2. 2.School of Mathematics T.I.F.R.BombayIndia

Personalised recommendations