Advertisement

Combinatorica

, Volume 1, Issue 1, pp 49–54 | Cite as

Forests and score vectors

  • Daniel J. Kleitman
  • Kenneth J. Winston
Article

Abstract

Thescore vector of a labeled digraph is the vector of out-degrees of its vertices. LetG be a finite labeled undirected graph without loops, and let σ(G) be the set of distinct score vectors arising from all possible orientations ofG. Let ϕ(G) be the set of subgraphs ofG which are forests of labeled trees. We display a bijection between σ(G) and ϕ(G).

AMS subject classification (1980)

05 C 20 05 C 05 05 C 30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    I. Gessel andD. L. Wang, Depth-First Search as a Combinatorial Correspondence,Journal of Combinatorial Theory (A),26 (1979), 308–313.zbMATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    D. J. Kleitman, The Number of Tournament Score Sequences for a Large Number of Players,Combinatorial Structures and Their Applications, University of Calgary, Alberta, (1969), 209–213.Google Scholar
  3. [3]
    D. J. Kleitman andD. L. Wang, Algorithms for Constructing Graphs and Digraphs with Given Valences and Factors,Discrete Math. 6 (1973), 79–88.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    A. Rényi, Some Remarks on the Theory of Trees,MTA Matematikai Kutató Intézetének Közleményei (Publ. of Math. Inst. Hung.) 4 (1959), 73–85.zbMATHGoogle Scholar
  5. [5]
    N. J. A. Sloane,A Handbook of Integer Sequences, Academic Press, 1973.Google Scholar
  6. [6]
    R. Stanley, Decompositions of Rational Convex Polytopes,Proceedings of Symposium on Combinatorial Mathematics and Optimal Design, Colorado State University (June, 1978), to appear.Google Scholar

Copyright information

© Akadémiai Kiadó 1981

Authors and Affiliations

  • Daniel J. Kleitman
    • 1
  • Kenneth J. Winston
    • 1
  1. 1.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations