Advertisement

Top

, Volume 10, Issue 1, pp 101–123 | Cite as

Analysis and comparisons of some solution concepts for stochastic programming problems

  • R. Caballero
  • E. Cerda
  • M. M. Muñoz
  • L. Rey
Article

Abstract

The aim of this study is to analyse the resolution of Stochastic Programming Problems in which the objective function depends on parameters which are continuous random variables with a known distribution probability. In the literature on these questions different solution concepts have been defined for problems of these characteristics. These concepts are obtained by applying a transformation criterion to the stochastic objective which contains a statistical feature of the objective, implying that for the same stochastic problem there are different optimal solutions available which, in principle, are not comparable. Our study analyses and establishes some relations between these solution concepts.

Key Words

Stochastic programming optimal solution concepts 

AMS subject classification

90C15 90C30 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bereanu B. (1964). Programme de Risque Minimal en Programmation Linéaire Stochastique.Comptes Rendus de l’Academie des Sciences. Serie I, Mathematique 259, 981–983.Google Scholar
  2. Charnes A. and Cooper W.W. (1963). Deterministic Equivalents for Optimizing and Satisfying under Chance Constraints.Operations Research 11, 18–39.CrossRefGoogle Scholar
  3. Kall P. (1982). Stochastic Programming.European Journal of Operational Research 10, 125–130.CrossRefGoogle Scholar
  4. Kall P. and Wallace S.W. (1994).Stochastic Programming. John Wiley.Google Scholar
  5. Kataoka S. (1963). A Stochastic Programming Model.Econometrica 31, 181–196.CrossRefGoogle Scholar
  6. Kibzun A.I. and Kan I.S. (1996).Stochastic Programming Problems with Probability and Quantile Functions. John Wiley.Google Scholar
  7. Leclerq J.P. (1982). Stochastic Programming: An Interactive Multicriteria Approach.European Journal of Operational Research 10, 33–41.CrossRefGoogle Scholar
  8. Markowitz H. (1952). Portfolio Selection.The Journal of Finance 7, 77–91.CrossRefGoogle Scholar
  9. Prékopa A. (1995).Stochastic Programming. Kluwer Academic Publishers.Google Scholar
  10. Sawaragi Y., Nakayama H. and Tanino T. (1985).Theory of Multiobjective Optimization. Academic Press.Google Scholar
  11. Stancu-Minasian I.M. (1984).Stochastic Programming with Multiple Objective Functions. D. Reidel Publishing Company.Google Scholar
  12. Zare Y. and Daneshmand A. (1995). A Linear Approximation method for solving a special class of the chance constrained programming problem.European Journal of Operational Research 80, 213–225.CrossRefGoogle Scholar

Copyright information

© Sociedad de Estadística e Investigación Operativa 2002

Authors and Affiliations

  • R. Caballero
    • 2
  • E. Cerda
    • 1
  • M. M. Muñoz
    • 2
  • L. Rey
    • 2
  1. 1.Department of Foundations of Economic AnalysisUniversidad Complutense de MadridSpain
  2. 2.Department of Applied Economics (Mathematics)Universidad de MálagaSpain

Personalised recommendations