Cellular and Molecular Neurobiology

, Volume 16, Issue 1, pp 61–72

The 21-aminosteroid U-74389F increases the number of glial fibrillary acidic protein-expressing astrocytes in the spinal cord of control and wobbler mice

  • Maria Claudia Gonzalez Deniselle
  • Susana L. Gonzalez
  • Gerardo G. Piroli
  • Analia E. Lima
  • Alejandro F. De Nicola


1. Wobbler mice suffer an autosomal recessive mutation producing severe motoneuron degeneration and dense astrogliosis, with increased levels of glial fibrillary acidic protein (GFAP) in the spinal cord and brain stem. They have been considered animal models of amyotrophic lateral sclerosis and infantile spinal muscular atrophy.

2. Using Wobbler mice and normal littermates, we investigated the effects of the membrane-active steroid Lazaroid U-74389F on the number of GFAP-expressing astrocytes and glucocorticoid receptors (GR). Lazaroids are inhibitors of oxygen radical-induced lipid peroxidation, and proved beneficial in cases of CNS injury and ischemia.

3. Four days after pellet implantation of U-74389F into Wobbler mice, hyperplasia and hypertophy of GFAP-expressing astrocytes were apparent in the spinal cord ventral and dorsal horn, areas showing already intense astrogliosis in untreated Wobbler mice. In control mice, U-74389F also produced astrocyte hyperplasia and hypertophy in the dorsal horn and hyperplasia in the ventral-lateral funiculi of the cord.

4. Givenin vivo U-74389F did not change GR in spinal cord of Wobbler or control mice, in line with the concept that it is active in membranes but does not bind to GR. Besides, U-74390F did not compete for [3H]dexamethasone binding when addedin vitro.

5. The results suggest that stimulation of proliferation and size of GFAP-expressing astrocytes by U-74389F may be a novel mechanism of action of this compound. The Wobbler mouse may be a valuable animal model for further pharmacological testing of glucocorticoid and nonglucocorticoid steroids in neurodegenerative diseases.

Key words

U-74389F 21-aminosteroid glial fibrillary acidic protein astrocytes Wobbler mice spinal cord 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aizenman, Y., and de Vellis, J. (1987). Synergistic action of thyroid hormone, insulin and hydrocortisone on astrocyte differentiation.Brain Res. 414301–308.PubMedCrossRefGoogle Scholar
  2. Bracken, M. B., Shepard, M. J., Collins, W. F.,et al. (1990). A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acture spinal cord injury.N. Engl. J. Med. 3221405–1411.PubMedCrossRefGoogle Scholar
  3. Braughler, J. M., and Hall, E. D. (1984). Effects of multi-dose methylprednisolone sodium succinate administration on injured cat spinal cord neurofilament degradation and energy metabolism.J. Neurosurg. 61290–295.PubMedCrossRefGoogle Scholar
  4. Braughler, J. M., Pregenzer, J. F., Chase, R. L., Duncan, L. A., Jacobsen, E. J. and McCall, J. M. (1987). Novel 21-amino steroids as potent inhibitors of iron-dependent lipid peroxidation.J. Biol. Chem. 26210438–10440.PubMedGoogle Scholar
  5. Cohen, G., and Author, A. P. (1982).Pathology of Oxygen, Academic Press, New York.Google Scholar
  6. Coirini, H., Magariños, A. M., De Nicola, A. F., Rainbow, T. C., and McEwen, B. S. (1985). Further studies of brain aldosterone binding sites employing new mineralocorticoid and glucocorticoid receptor markers in vitro.Brain Res. 361212–216.PubMedCrossRefGoogle Scholar
  7. De Nicola, A. F. (1993). Steroid hormones and neuronal regeneration. InAdvances in Neurology (F. J. Seil, Ed.), Raven Press, New York, Vol. 59, pp. 199–206.Google Scholar
  8. De Nicola, A. F., Moses, D. F., Gonzalez, S., and Orti, E. (1989). Adrenocorticoid action in the spinal cord: Some unique molecular properties of glucocorticoid receptors.Cell. Mol. Neurobiol. 9179–192.PubMedCrossRefGoogle Scholar
  9. Duchen, L. W., Falconer, D. S., and Stricht, S. J. (1966). Hereditary progressive neurogenic muscular atrophy in the mouse.J. Physiol. (London)18353P-55P.Google Scholar
  10. Eddleston, M., and Mucke, L. (1993). Molecular profile of reactive astrocytes—Implications for their role in neurologic disease.Neuroscience 5415–36.PubMedCrossRefGoogle Scholar
  11. Eng, L. F. (1985). Glial fibrillary acidic protein (GFAP): The major protein of glial intermediate filaments in differentiated astrocytes.J. Neuroimmunol. 8203–214.PubMedCrossRefGoogle Scholar
  12. Eng, L. F., and Ghirnikar, R. S. (1994). GFAP and astrogliosis.Brain Pathol. 4229–237.PubMedGoogle Scholar
  13. Ferrini, M., Gonzalez, S., Antakly, T., and De Nicola, A. F. (1993). Immunocytochemical localization of glucocorticoid receptors in the spinal cord: Effects of adrenalectomy, glucocorticoid treatment and spinal cord transection.Cell. Mol. Neurobiol. 13387–398.PubMedCrossRefGoogle Scholar
  14. Fleishaker, J. C., Peters, G. R., and Cathcart, K. S. (1993). Evaluation of the pharmacokinetics and tolerability of tirilazad mesylate, a 21-aminosteroid free radical scavenger. I. Single-dose administration.J. Clin. Pharmacol. 33175–181.PubMedGoogle Scholar
  15. Gage, F. H., Olejniczak, P., and Armstrong, D. M. (1988). Astrocytes are important for sprouting in the septo-hippocampal circuit.Exp. Neurol. 1022–12.PubMedCrossRefGoogle Scholar
  16. Garcia-Segura, L. M., Liquin, S., Parducz, and Naftolin, F. (1994). Gonadal hormone regulation of glial fibrillary acidic protein immunoreactivity and glial ultrastructure in the rat neuroendocrine hypothalamus.Glia 1059–69.PubMedCrossRefGoogle Scholar
  17. Giulian, D., and Corpuz, M. (1993). Microglial secretion products and their impact on the nervous system. InAdvances in Neurology (F. J. Seil, Ed.), Raven Press, New York, Vol. 59, pp. 315–320.Google Scholar
  18. Goss, J. R., Finch, C. E., and Morgan, D. G. (1991). Age-related changes in glial fibrillary acidic protein mRNA in the mouse brain.Neurobiol. Aging 12165–170.PubMedCrossRefGoogle Scholar
  19. Hall, E. D. (1987). Beneficial effects of the 21-aminosteroid U-74006F in acute CNS trauma and hypovolemic shock.Acta Anaesth. Belg. 38421–425.PubMedGoogle Scholar
  20. Hall, E. D. (1993). Neuroprotective actions of glucocorticoid and nonglucocorticoid steroids in acute neuronal injury.Cell. Mol. Neurobiol. 13415–432.PubMedCrossRefGoogle Scholar
  21. Krieger, C., Perry, T. L., Hanse, S., Mitsumoto, H., and Honore, T. (1992). Excitatory amino acid receptor antagonist in murine motoneurone disease (the Wobbler mouse).Can. J. Neurol. Sci. 19462–465.PubMedGoogle Scholar
  22. Kupersmith, M. J., Kaufman, D., Paty, D. W., Ebers, G., McFarland, H., Johnson, K., Reingold, S., and Whitaker, J. (1994). Megadose corticosteroids in multiple sclerosis.Neurology 41–4.Google Scholar
  23. Laage, S., Zobel, G., and Jockusch, H. (1988). Astrocyte overgrowth in the brain stem and spinal cord of mice affected by spinal atrophy, Wobbler.Dev. Neurosci. 10190–198.PubMedGoogle Scholar
  24. La Mantia, L., Eoli, M., Milanese, C., Salmaggi, A., Dufour, A., and Torri, V. (1994). Double-blind trial of dexamethasone versus methylprednisolone in multiple sclerosis acute relapses.Eur. Neurol. 34199–203.PubMedGoogle Scholar
  25. Laping, N. J., Nichols, N. R., Day, J. R., and Finch, C. E. (1991). Corticosterone differentially regulates the bilateral response of astrocyte mRNAs in the hippocampus to entorhinal cortex lesions in male rats.Mol. Brain Res. 10291–297.PubMedCrossRefGoogle Scholar
  26. Laping, N. J., Teter, B., Nichols, N. R., Rozovsky, I., and Finch, C. E. (1994). Glial fibrillary acidic protein: Regulation by hormones, cytokines, and growth factors.Brain Pathol. 1259–275.Google Scholar
  27. Leetsma, J. E. (1980). Animal model: Motor neuron disease in the wobbler (wr/wr) mouse.Am. J. Pathol. 100811–814.Google Scholar
  28. McCall, J. M., Hall, E. D., and Braughler, J. M. (1989). A new class of 21-aminosteroids which are useful for stroke and trauma. InSteroids and Diseases of the Central Nervous System (R. Capildeo, Ed.), John Wiley & Sons, New York, pp. 69–80.Google Scholar
  29. McKeon, R. J., Schreiber, R. C., Rudge, J. S., and Silver, J. (1991). Reduction of neurite outgrowth in a model of glial scarring following CNS injury is correlated with the expression of inhibitory molecules on reactive astrocytes.J. Neurosci. 113398–3411.PubMedGoogle Scholar
  30. Mitsumoto, H., and Bradley, W. G. (1982). Murine motor neuron disease (the Wobbler Mouse): Degeneration and regeneration of the lower motor neuron.Brain Res. 105811–834.Google Scholar
  31. Moses, D. F., Gonzalez, S., McEwen, B. S., and De Nicola, A. F. (1991). Glucocorticoid type II receptors of the spinal cord show lower affinity than hippocampal type II receptors. Binding parameters obtained with different experimental protocols.J. Steroid Biochem. Mol. Biol. 395–12.PubMedCrossRefGoogle Scholar
  32. Muller, H. W., Matthiessen, H. P., Schmalenbach, C., and Schroeder, W. O. (1991). Glial support of CNS neuronal survival, neurite growth and regeneration.Rest. Neurol. Neurosci. 2229–232.Google Scholar
  33. Murayama, S., Inoue, K., Kawakami, H., Bouidin, T. W., and Suzuki, K. (1991). A unique pattern of astrocytosis in the primary motor area in amyotrophic lateral sclerosis.Acta Neuropathol. (Berlin)82456–461.PubMedCrossRefGoogle Scholar
  34. Murphy, B. E. P. (1968). Clinical evaluation of urinary cortisol: Determination by competitive protein-binding radioassay.J. Clin. Endocr. Metab. 28343–348.PubMedCrossRefGoogle Scholar
  35. Nichols, N. R., Osterburg, H. H., Masters, J. N., Millar, S. L., and Finch, C. E. (1990). Messenger RNA for glial fibrillary acidic protein is decreased in rat brain following acute and chronic corticosterone treatment.Mol. Brain Res. 71–7.PubMedCrossRefGoogle Scholar
  36. O'Banion, M. K., Young, D. A., and Bohn, M. C. (1994). Corticosterone-responsive mRNAs in primary rat astrocytes.Mol. Brain Res. 2257–68.PubMedCrossRefGoogle Scholar
  37. O'Callaghan, J. P., Brinton, R. E., and McEwen, B. S. (1991). Glucocorticoid regulate the synthesis of glial fibrillary acidic protein in intact and adrenalectomized rats but not affect its expression following brain injury.J. Neurochem. 57860–869.PubMedCrossRefGoogle Scholar
  38. Olanow, C. W. (1993). A radical hypothesis for neurodegeneration.TINS 16439–444.PubMedGoogle Scholar
  39. Orti, E., Coirini, H., and De Nicola, A. F. (1985). Properties and distribution of glucocorticoidbinding sites in cytosol of the spinal cord.Neuroendocrinology 40225–231.PubMedGoogle Scholar
  40. Reier, P. J., and Houle, J. D. (1988). The glial scar: Its bearing on axonal elongation and transplantation approaches to CNS repair. InAdvances in Neurology (S. G. Waxman, Ed.), Raven Press, New York, Vol. 59, pp. 87–138.Google Scholar
  41. Rexed, B. (1954). A cytoarchitectonic atlas of the spinal cord in the cat.J. Comp. Neurol. 100297–380.PubMedCrossRefGoogle Scholar
  42. Rosen, D. R., Siddique, T., Patterson, D.,et al. (1993). Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis.Nature 36259–62.PubMedCrossRefGoogle Scholar
  43. Rosner, W., and Polimeni, S. T. (1978). An exchange assay for the cytoplasmic glucocorticoid receptor in the liver of the rat.Steroids 31427–438.PubMedCrossRefGoogle Scholar
  44. Shea, T. B. (1994). Amyloid precursor protein as a glial-derived growth factor.TINS 17338–339.PubMedGoogle Scholar
  45. Wilkin, G. P., Marriot, D. R., and Cholewinski, A. J. (1990). Astrocyte heterogeneity.TINS 1343–46 (1990).PubMedGoogle Scholar
  46. Yung, K. K. L., Tang, F., and Vacca-Galloway, L. L. (1992). Changes of neuropeptides in spinal cord and brain stem of Wobbler mouse at different stages of motoneuron disease.Neuroscience 50209–222.PubMedCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1996

Authors and Affiliations

  • Maria Claudia Gonzalez Deniselle
    • 2
    • 1
  • Susana L. Gonzalez
    • 2
    • 1
  • Gerardo G. Piroli
    • 2
    • 1
  • Analia E. Lima
    • 2
  • Alejandro F. De Nicola
    • 2
    • 1
  1. 1.Departamento de BioquímicaFacultad de Medicina, UBABuenos AiresArgentina
  2. 2.Laboratory of Neuroendocrine BiochemistryInstituto de Biologia y Medicina ExperimentalBuenos AiresArgentina

Personalised recommendations