Skip to main content
Log in

Enhanced proliferation of coronary endothelial cells in response to growth factors is synergized by hemodialysate compounds in vitro

  • Published:
Research in Experimental Medicine

Summary

Using capillary endothelial cells from the coronary system of guinea pig heart, we have devised an in vitro assay suitable for measuring proliferative and growth-promoting effects mediated by drugs and growth factors. In this assay, hemodialysate and fractions isolated from it—consisting exclusively of low-molecular-weight compounds from calf blood—stimulate the proliferation of coronary endothelial cells. This effect is not a trivial nutritive one. Furthermore, in respect to the stimulation of proliferation, hemodialysate synergizes with epidermal growth factor, basic fibroblast growth factor, and endothelial cell growth factor, but not with insulin, which shows no proliferative effect in our system. From data obtained by analysis of hemodialysate fractions, it is deduced that the active compounds are strongly negatively charged oligosaccharides with a molecular weight of apparently 3000 Dalton. The synergistic effect of hemodialysate compounds on proliferation of endothelial cells as well as their previously demonstrated insulin-like activity is believed to explain the therapeutic efficacy of hemodialysate in cases of impaired wound healing and occlusive diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Baird A, Ling N (1987) Fibroblast growth factors are presented in the extracellular matrix produced by endothelial cells in vitro: implications for a role of heparinase-like enzymes in the neovascular response. Biochem Biophys Res Commun 142:428–435

    Article  PubMed  CAS  Google Scholar 

  2. Bar RS, Dolash S, Dake BL, Boes M (1986) Cultured capillary endothelial cells from bovine adipose tissue: a model for insulin binding and action in microvascular endothelium. Metabolism 35:317–322

    Article  PubMed  CAS  Google Scholar 

  3. Bar RS, Siddle K, Dolash S, Boes M, Dake B (1988) Actions of insulin and insulin-like growth factors I and II in cultured microvessel endothelial cells from bovine adipose tissue. Metabolism 37:714–720

    Article  PubMed  CAS  Google Scholar 

  4. Bertsch S, Marks F (1974) Effect of foetal calf serum and epidermal growth factor on DNA synthesis in explants of chick embryo epidermis. Nature 251:517–519

    Article  PubMed  CAS  Google Scholar 

  5. Brasseur R, De Paermentier F (1979) The effects of Solcoseryl on the growth and multiplication of chick embryo fibroblasts cultivated “in vitro”. Biochem Exp Biol 15:349–353

    PubMed  CAS  Google Scholar 

  6. Brown GL, Nanney LB, Griffen J, Cramer AB, Yancey JM, Curtsinger LJ, Holtzin L, Schultz GS, Jurkiewicz MJ, Lynch JB (1989) Enhancement of wound healing by topical treatment with epidermal growth factor. N Engl J Med 321:76–79

    Article  PubMed  CAS  Google Scholar 

  7. Burgess WH, Maciag T (1989) The heparin-binding (fibroblasts) growth factor family of proteins. Annu Rev Biochem 58:575–606

    Article  PubMed  CAS  Google Scholar 

  8. Carson MP, Saenz de Tejada I, Goldstein I, haudenschild CC (1989) Culture of human corpus cavernosum endothelium. In Vitro 25:248–254

    CAS  Google Scholar 

  9. Charlesworth D, Harris PL, Palmer MK (1975) Intra-arterial infusion of Solcoseryl: a clinical trial of a method of treatment for pre-gangrene of the lower limb. Br J Surg 62:337–339

    Article  PubMed  CAS  Google Scholar 

  10. Connolly DT, Knight MB, Harakas NK, Wittwer AJ, Feder J (1986) Determination of the number of endothelial cells in culture using an acid phosphatase assay. Anal Biochem 152:136–140

    Article  PubMed  CAS  Google Scholar 

  11. Conover A, Hintz RL, Rosenfeld RG (1989) Direct evidence that the insulin receptor mediates a mitogenic response in cultured human fibroblasts. Horm Metab Res 21:59–63

    Article  PubMed  CAS  Google Scholar 

  12. Dichek D, Quertermous T (1989) Variability in messenger RNA levels in human umbilical vein endothelial cells of different lineage and time in culture. In Vitro 25:289–292

    CAS  Google Scholar 

  13. Folkman J (1984) Angiogenesis. In: Jaffe EA (ed) Biology of endothelial cells (Chapter 42). Martinus Nijhoff, Boston, pp 413–428

    Google Scholar 

  14. Gerlach E, Nees S, Becker BF (1985) The vascular endothelium: a survey of some newly evolving biochemical and physiological features. Basic Res Cardiol 80:459–474

    Article  PubMed  CAS  Google Scholar 

  15. Gospodarowicz D, Savion N, Giguere L (1982) The control of proliferation and differentiation of endothelial cells. In: Nossel HL, Vogel HJ (eds) Pathobiology of the endothelial cell. Academic Press, New York, pp. 19–61

    Google Scholar 

  16. Grotendorst GR, Martin GR, Pencev D, Sodek J, Harvey AK (1985) Stimulation of granulation tissue formation by platelet-derived growth factor in normal and diabetic rats. J Clin Invest 76:2323–2329

    Article  PubMed  CAS  Google Scholar 

  17. Grotendorst GR, Soma Y, Takehara K, Charette M (1989) EGF and TGF-alpha are potent chemoattractants for endothelial cells and EGF-like peptides are present at sites of tissue regeneration. J Cell Physiol 139:617–623

    Article  PubMed  CAS  Google Scholar 

  18. Hanam SR, Singleton CE, Rudek W (1983) The effect of topical insulin on infected cutaneous ulcerations in diabetic and nondiabetic mice. J Foot Surg 22:298–301

    PubMed  CAS  Google Scholar 

  19. Herrschaft H, Kunze U, Gleim F (1977) Die Wirkung von Actovegin auf die Gehirndurchblutung und den Gehirnstoffwechsel des Menschen. Med Welt 28:339–345

    PubMed  CAS  Google Scholar 

  20. Hoover GA, McCormick S, Kalant N (1989) Effects of porcine aortic smooth muscle cell conditioned medium on endothelial cell replication Arteriosclerosis 9:76–83

    PubMed  CAS  Google Scholar 

  21. Hoshi H, Kan M, Chen J-K, McKeehan WL (1988) Comparative endocrinology-paracrinology-autocrinology of human adult large vessel endothelial and smooth muscle cells. In Vitro 24:309–320

    CAS  Google Scholar 

  22. Ingber DE, Madri JA, Folkman J (1987) Endothelial growth factors and extracellular matrix regulate DNA synthesis through modulation of cell and nuclear expansion. In Vitro 23:387–394

    CAS  Google Scholar 

  23. Konturek SJ, Brzozowski T, Dembinski A, Warzecha A, Drozdowicz D (1988) Comparison of Solcoseryl and epidermal growth factors (EGV) in healing of chronic gastroduodenal ulcerations and mucosal growth in rats. Hepato-gastroenterology 35:25–29

    PubMed  CAS  Google Scholar 

  24. Kumar S, West DC, Ager A (1987) Heterogeneity in endothelial cells from large vessels and microvessels. Differentiation 36:57–70

    Article  PubMed  CAS  Google Scholar 

  25. Machicao F, Mushack J, Seffer E, Ermel B, Häring HU (1990) Mannose, glucosamine and inositol monophosphate inhibit the effects of insulin on lipogenesis. Biochem J 266:909–916

    PubMed  CAS  Google Scholar 

  26. Mansson P-E, Malark M, Sawada H, Kan M, McKeehan WL (1990) Heparin-binding (fibroblast) growth factor type one and two genes are co-expressed in proliferating normal human vascular endothelial and smooth muscle cells in culture. In Vitro 26:209–212

    CAS  Google Scholar 

  27. Marks RM, Roche WR, Czerniecki M, Penny R, Nelson DS (1986) Mast cell granules cause proliferation of human microvascular endothelial cells. Lab Invest 55:289–294

    PubMed  CAS  Google Scholar 

  28. McAuslan BR, Bender V, Reily W, Moss BA (1985) New functions of epidermal growth factor: stimulation of capillary endothelial cell migration and matrix dependent proliferation. Cell Biol Int Rep 9:175–182

    Article  PubMed  CAS  Google Scholar 

  29. Nees S, Gerbes AL, Gerlach E (1981) Isolation, identification, and continous culture of coronary endothelial cells from guinea pig hearts. Eur J Cell Biol 24:287–297

    PubMed  CAS  Google Scholar 

  30. Niinikoski J, Renvall S (1979) Effect of a deproteinized blood extract on experimental granulation tissue. Acta Chir Scand 145:287–291

    PubMed  CAS  Google Scholar 

  31. Obermaier-Kusser B, Mühlbacher C, Mushack J, Seffer E, Ermel B, Machicao F, Schmidt F, Häring HU (1989) Further evidence for a two-step model of glucose-transport regulation. Biochem J 261:699–705

    PubMed  CAS  Google Scholar 

  32. Pessa ME, Kirby MD, Bland I, Copeland EM (1987) Growth factors and determinants of wound repair. J Surg Res 42:207–217

    Article  PubMed  CAS  Google Scholar 

  33. Pickart L (1981) The use of glycylhistidyllysine in culture systems. In Vitro 17:459–466

    PubMed  CAS  Google Scholar 

  34. Rudowski W, Klucinski W, Kopec J, Sitarska E, Brudzynsk-Charewicz S, Nasilowski W, Rusiniak L (1984) Effect of a protein-free hemodialysate on tissue respiration and healing of burns. Burns 10:363–367

    Article  CAS  Google Scholar 

  35. Rupnick MA, Carey A, Williams SK (1988) Phenotypic diversity in cultured cerebral microvascular endothelial cells. In Vitro 24:435–444

    CAS  Google Scholar 

  36. Schreiber AB, Winkler ME, Derynck R (1986) Transforming growth factor-α: a more potent angiogenic mediator than epidermal growth factor. Science 232:1250–1253

    Article  PubMed  CAS  Google Scholar 

  37. Smahel J (1982) Effect of a protein-free hemodialysate on the recovery of blood circulation in an ischaemic skin lesion. Br J Exp Pathol 63:117–183

    Google Scholar 

  38. Straczek J, Heulin MH, Sarem F, Lasbennes A, Artur M, Geschier C, Stoltz JF, Belleville F, Nabet P, Maquart FX, Gillery P, Borel J, Herman A, Lebeurre MD, DeLavergne E, Genetet N (1983) Effect of partially purified preparation of human somatomedin A in the three cultured cell systems. In: Fischer G, Wieser RJ (eds) Hormonally defined media. Springer, Berlin Heidelberg New York, pp 127–130

    Google Scholar 

  39. Takehara K, LeRoy EC, Grotendorst GR (1987) TGF-β inhibition of endothelial cell proliferation: alteration of EGF binding and EGF-induced growth-regulatory (competence) gene expression. Cell 49:415–422

    Article  PubMed  CAS  Google Scholar 

  40. Thompson JA, Haudenschild CC, Anderson KD, DiPietro JM, Anderson WF, Machiag T (1989) Heparin-binding growth factor-1 induces the formation of organoid neovascular structures in vivo. Proc Natl Acad Sci USA 86:7928–7932

    Article  PubMed  CAS  Google Scholar 

  41. Van Brunt J, Klausner A (1988) Growth factors speed wound healing. Biotechnology 6:25–30

    Article  Google Scholar 

  42. Voyta JC, Via DP, Butterfield CE, Zetter BR (1984) Identification and isolation of endothelial cells based on their increased uptake of acetylated low density lipoprotein. J Cell Biol 99:2034–2040

    Article  PubMed  CAS  Google Scholar 

  43. Wright NA, Pike C, Elia G (1990) Induction of a novel epidermal growth factor-secreting cell lineage by mucosal ulceration in human gastrointestinal stem cells. Nature 343:82–85

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schönwald, D., Sixt, B., Machicao, F. et al. Enhanced proliferation of coronary endothelial cells in response to growth factors is synergized by hemodialysate compounds in vitro. Res. Exp. Med. 191, 259–272 (1991). https://doi.org/10.1007/BF02576682

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02576682

Key words

Navigation