, Volume 14, Issue 4, pp 303–341

The calculus of finite differences over certain systems of numbers



A recursive process of interpolation over functions whose arguments belong to certain systems of numbers is described. The process can, in particular, be applied to functions of many variables and, for the examples considered, is both more flexible and more powerful than either the use of many dimensional divided differences or multivariate Lagrange interpolation. Recursive processes of differentiation, integration, and confluent interpolation over functions whose arguments belong to certain further systems of numbers are developed from the interpolation procedure.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Steffenson J. F.,Interpolation, Second Ed. (1965), Chelsea, New York.Google Scholar
  2. [2]
    Thacher H. C. andMilne W. E.,Interpolation in several variables, Jour. Soc. Indust. Appl. Math.,8 (1960) 33–42.MATHCrossRefMathSciNetGoogle Scholar
  3. [3]
    Thacher H. C.,Derivation of interpolation formulas in several independent variables, Ann. New York Acad. Sci.,86 (1960) 158–775.MathSciNetGoogle Scholar
  4. [4]
    Coatmélec C.,Approximation et interpolation des fonctions différentiables de plusiers variables, Ann. Sci. École Norm. Sup.,83 (1966) 271–341.MATHGoogle Scholar
  5. [5]
    Birkhoff G., Schulz M. andVarga R. S.,Piecewise Hermite interpolation in one and two variables with application to partial differential equations, Numer. Math.,11 (1968) 232–256.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Hall C. A.,Bicubic interpolation over triangles, Jour. Math. Mech.,19 (1969) 1–11.MATHGoogle Scholar
  7. [7]
    Guenther R. B. andRothman E. L.,Some observations on interpolation in higher dimensions, Math. Comput.,24 (1970) 517–522.CrossRefGoogle Scholar
  8. [8]
    Zenísek A.,Interpolation polynomials on the triangle, Numer. math.,15 (1970) 283–296.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    Nicolaides R. A. On Lagrange interpolation in n variables, Institute of Computer Science (London) Tech. Note ICSI 274 (1970).Google Scholar
  10. [10]
    Nicolaides R. A.,On a class of finite elements generated by Lagrange interpolation, Institute of Computer Science (London) Tech. Note ICSI 329 (1971).Google Scholar
  11. [11]
    Salzer H. E.,Formulas for bivariate hyperosculatory interpolation, Math. Comput.,25 (1971) 119–133.MATHCrossRefMathSciNetGoogle Scholar
  12. [12]
    Ciarlet P. G. andRaviart P. A.,General Lagrange and Hermite interpolation in R n with applications to finite element methods, Arch. Rational Mech. Anal.,46 (1972) 177–199.MATHCrossRefMathSciNetGoogle Scholar
  13. [13]
    Sylvester J. J.,On the equation to the secular inequalities in the planetary theory, Phil. Mag.16 (1883) 267–269.Google Scholar
  14. [14]
    Nitsche J.,Interpolation in Sobolevschen Funktionenraumen, Numer. Math.,13 (1969) 334–343.MATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    Semenov E. M.,Imbedding theorems for Banach spaces of measurable functions, Soviet. Math. Dokl.,5 (1964) 831–834.MATHGoogle Scholar
  16. [16]
    Semenov E. M.,A new interpolation theorem, Functional Anal. Appl.,2 (1968) 158–168.CrossRefGoogle Scholar
  17. [17]
    Semenov E. M.,A new method for establishing interpolation theorems in symmetric spaces, Soviet Math. Dokl.,10 (1969) 507–510.MATHGoogle Scholar
  18. [18]
    Mityagin B. S.,An interpolation theorem for modular spaces, Mat. Sb.,66 (1965) 473–482.MathSciNetGoogle Scholar
  19. [19]
    Calderón A. P.,Spaces between L’ and L and the theorem of Marcinkiowicz, Studia Math.,26 (1966) 273–299.MATHMathSciNetGoogle Scholar
  20. [20]
    Shimogaki T.,On the complete continuity of operators in an interpolation theorem, Jour. Fac. Sci. Hokkaido Univ., Ser. I,20 (1968) 109–114.MATHMathSciNetGoogle Scholar
  21. [21]
    Shimogaki T.,An interpolation theorem on Banach function spaces, Studia Math.,31 (1968) 233–240.MATHMathSciNetGoogle Scholar
  22. [22]
    Lorentz G. G. andShimogaki T.,Interpolation theorems for operators in function spaces, J. Functional Analysis,2 (1968) 31–51.MATHCrossRefMathSciNetGoogle Scholar
  23. [23]
    Lorentz G. G. andShimogaki T.,Interpolation theorems for space Λ, Abstract spaces and approximation (Proc. Conf. Oberwolfach, 1968) Birkhaüser, Basel (1969) 94–98.Google Scholar
  24. [24]
    Boyd D. W.,Indices of function spaces and their relationships to interpolation, Canad. J. Math.,21 (1969) 1245–1254.MATHMathSciNetGoogle Scholar
  25. [25]
    Zippin M.,Interpolation of operators of weak type between rearrangement invariant function spaces, J. Functional Analysis,7 (1971) 267–284.MATHCrossRefMathSciNetGoogle Scholar
  26. [26]
    Sharpley R. C.,Spaces Λ (X) and interpolation, J. Functional Analysis11 (1972) 479–513.MATHCrossRefMathSciNetGoogle Scholar
  27. [27]
    Sharpley R. C.,Interpolation theorems for compact operators, Indiana Univ. Math. J.22 (1973) 965–984.MATHCrossRefMathSciNetGoogle Scholar
  28. [28]
    Sharpley R. C.,Interpolation of operators for Λ spaces, Bull. Amer. Math. Soc.,80 (1974) 259–261.MATHMathSciNetCrossRefGoogle Scholar
  29. [29]
    Sharpley R. C.,Interpolation of n pairs and counter examples employing indices, J. Approximation Theory,13 (1975) 117–127.MATHCrossRefMathSciNetGoogle Scholar
  30. [30]
    Krein S. G. andSemenov E. M.,Interpolation of operators of weakened type, Functional Anal. Appl.,7 (1973) 89–90.CrossRefMathSciNetGoogle Scholar
  31. [31]
    Aitken A. C.,On interpolation by proportional parts, without the use of differences, Proc. Edinburgh Math. Soc.,3 (1932) 56–84.MATHGoogle Scholar
  32. [32]
    Neville E. H.,Iterative interpolation, J. Indian Math. Soc.,20 (1934) 87–120.Google Scholar
  33. [33]
    van der Waerden B. L.,Algebra (5th Ed.) (1967), Springer, Berlin-Heidelberg-New York.MATHGoogle Scholar
  34. [34]
    Moore E. H.,On the reciprocal of the general algebraic matrix, Bull. Amer. Math. Soc.,26 (1920) 394–395.Google Scholar
  35. [35]
    Moore E. H.,General analysis, Mem. Amer. Math. Soc.,1 (1935).Google Scholar
  36. [36]
    Penrose R.,A generalized inverse for matrices, Proc. Camb. Phil. Soc.,51 (1950) 406–413.MathSciNetCrossRefGoogle Scholar
  37. [37]
    Schafer R. D.,An introduction to nonassociative algebras (1966), Academic Press, New York-London.MATHGoogle Scholar
  38. [38]
    Wynn P.,A note on the generalized Euler transformation, Comput. J.14 (1974) 437–441.CrossRefMathSciNetGoogle Scholar
  39. [39]
    Wynn P.,General purpose vector epsilon algorithm procedures, Numer Math.,6 (1964) 22–36.MATHCrossRefMathSciNetGoogle Scholar
  40. [40]
    Wynn P.,A note on Salzer’s method for summing certain slowly convergent series, J. Mathematical Phys.,35 (1956) 318–320.MathSciNetMATHGoogle Scholar

Copyright information

© Instituto di Elaborazione della Informazione del CNR 1978

Authors and Affiliations

  • P. Wynn
    • 1
  1. 1.School of Computer ScienceMcGill UniversityMontreal

Personalised recommendations