CALCOLO

, Volume 9, Issue 4, pp 235–278 | Cite as

Upon some continuous prediction algorithms. II

Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Salzer H.,A simple method for summing certain slowly convergent series, Jour. Math. Phys.,33 (1955) 356–359.MathSciNetMATHGoogle Scholar
  2. 2.
    Wynn, P.,A note on Salzer’s method for summing certain slowly convergent series, Jour. Math. Phys.,35 (1956) 318–320.MathSciNetMATHGoogle Scholar
  3. 3.
    Aitken A..,On interpolation by proportional parts, without the use of differences, Proc. Edin. Math. Soc.,3 (1932) 56.MATHGoogle Scholar
  4. 4.
    Neville E. H.,Iterative interpolation, Jour. Ind. Math. Soc.,20 (1943) 87.Google Scholar
  5. 5.
    Romberg W.,Vereinfachte numerische Integration, Kon. Norsk. Videnskab. Selek. Forhandl.,28 (1955) 30–36.MATHMathSciNetGoogle Scholar
  6. 6.
    Rutishauser H.,Ausdehnung des Rombergschen Prinzips, Num. Math.,5 (1963) 48–54.MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Thiele T. N.,Différences réciproques, Overs. danske Vidsk. Selsk. Forhandl. (Stzber. Akad. Kopenhagen) (1906) 153–171.Google Scholar
  8. 8.
    Nörlund N. E.,Vorlesungen über Differensenrechnung, Springer, Berlin (1937).Google Scholar
  9. 9.
    Wynn P.,On a Procrustean techniques for the numerical transformation of slowly convergent sequences and series, Proc. Camb. Phil. Soc.,52 (1956) 663–671.MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    Wynn P.,On a device for computing the em (Sn)transformation, Math. of Comp.,10 (1956) 91–96.MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    Wynn P.,Confluent forms of certain non-linear algorithms, Arch. der Math.,11 (1960) 223–236.MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Hankel G.,Über eine besondere Klasse der symmetrischen Determinanten (Leipzig dissertation) Göttingen (1861).Google Scholar
  13. 13.
    Perron O.,Die Lehre von den Kettenbrüchen, Teubner, Stuttgart (1957).MATHGoogle Scholar
  14. 14.
    Wall H. S.,Analytic theory of continued fractions, Van Nostrand, New York (1948).MATHGoogle Scholar
  15. 15.
    Wynn P.,Difference-differential recursions for Padé quotients, Proc. Lond. Math. Soc.,23 (1971) 283–300.MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Wynn P.,A note on a confluent form of the s-algorithm, Arch. der Math.,11 (1960) 237–240.MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Wynn P.,Upon the definition of an integral as the limit of a continued fraction, Arch. Rat. Mech. Anal.,28 (1968) 83–148.MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Hardy G. H.,Divergent series, Oxford Univ. Press, London (1949).MATHGoogle Scholar
  19. 19.
    Wynn P.,Upon a second confluent form of the δ-algorithm, Proc. Glas. Math. Assoc.,5 (1962) 160–165.MATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Wynn P.,On a connection between the first and second confluent forms of the δ-algorithm, Nieuw. Arch. voor Wisk.,11 (1963) 19–21.MATHMathSciNetGoogle Scholar
  21. 21.
    Rutishauser H.,Der Quotienten-Differenzen-Algorithmus, Birkhäuser, Basel-Stuttgart (1957).MATHGoogle Scholar
  22. 22.
    Aitken A. C.,Determinants and matrices, Oliver and Boyd, Edinburgh (1949).MATHGoogle Scholar
  23. 23.
    Erdélyi A. et al,Higher transcendental functions,1 McGraw-Hill, New York (1953).Google Scholar
  24. 24.
    British Association for the Advancement of Science, Math. Tables,1, Cambridge (1946).Google Scholar
  25. 25.
    Wynn P.,Continued fractions whose coefficients obey a non-commutative law of multiplication, Arch. Rat. Mech. Anal.,12 (1963) 273–312.MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Wynn P.,Acceleration techniques for iterated vector and matrix problems, Math of Comp.,6 (1964) 22–36.MATHMathSciNetGoogle Scholar
  27. 27.
    Wynn P.,Acceleration techniques in numerical analysis, with particular reference to problems in one independent variable, Proc. IFIP Congress 1962, North Holland, Amsterdam (1963) 149–156.Google Scholar
  28. 28.
    McLeod J. B.,A note on the ε-algorithm, Computing,7 (1971) 17–24.MATHCrossRefMathSciNetGoogle Scholar
  29. 29.
    Wynn P.,Vector continued fractions, Linear Algebra and App.,1 (1968) 357–395.MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Wynn P.,A note on the generalised Euler transformation, Computer Jour.,14 (1971) 437–441.CrossRefMathSciNetMATHGoogle Scholar
  31. 31.
    Wynn P.,An arsenal of Algol procedures for the evaluation of continued fractions and for effecting the epsilon algorithm, Rev. Franç. de Trait. de l’Inf. (Chiffres)9 (1966) 327–362.MathSciNetGoogle Scholar
  32. 32.
    Wynn P.,An arsenal of Algol procedures for complex arithmetic, Nord. Tids. for Inf. Beh. (BIT),4 (1962) 231–255.MathSciNetGoogle Scholar
  33. 33.
    Wynn P.,General purpose vector epsilon Algol procedures, Num. Math.,6 (1964) 22–36MATHCrossRefMathSciNetGoogle Scholar
  34. 34.
    Wynn P.,Singular rules for certain non-linear algorithms, Nord. Tids. for Inf. Beh. (BIT),3 (1963) 175–195.MATHMathSciNetGoogle Scholar
  35. 35.
    Wynn P.,A note on programming repeated application of the ε-algorithm, Rev. Franç. de Trait. de l’Inf. (Chiffres),8 (1965), 23–62.MathSciNetGoogle Scholar

Copyright information

© Instituto di Elaborazione della Informazione del CNR 1973

Authors and Affiliations

  • P. Wynn
    • 1
  1. 1.Centre de Recherches MathématiquesUniversité de MoutréalMontréal(Canada)

Personalised recommendations