Advertisement

Theoretical and Mathematical Physics

, Volume 115, Issue 1, pp 479–495 | Cite as

Statistical hydrodynamics of magnetic fluids. I. the nonequilibrium statistical operator method

  • I. M. Mryglod
  • M. V. Tokarchuk
Article

Abstract

The Zubarev nonequilibrium statistical operator is used to describe the generalized hydrodynamic state of a magnetic fluid in an external magnetic field. The magnetic fluid is modeled with “liquid-state” and “magnetic” subsystems described using the classical and quantum statistics methods respectively. Equations of the generalized statistical hydrodynamics for a magnetic fluid in a nonhomogeneous external magnetic field with the Heisenberg spin interaction are derived for “liquid-state” and “magnetic” subsystems characterized by different nonequilibrium temperatures. These equations can be used to describe both the weakly and strongly nonequilibrium states. Some limiting cases are analyzed in which the variables of one of the subsystems can be formally neglected.

Keywords

External Magnetic Field Magnetic Fluid Nonequilibrium State Liouville Operator Dynamic Structure Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Handrich and S. Kobe,Amorphe Ferro- und Ferrimagnetika, Akademie, Berlin (1980).Google Scholar
  2. 2.
    Proceedings of the 6th International Conference on Magnetic Fluids: Program and Abstracts. Paris, July 20–24, 1992, Univ. Curie, Paris (1992).Google Scholar
  3. 3.
    K. Shinichi, F. Fumio, and O. Masaaki,Exp. Therm. and Fluids Sci.,5, 641 (1992).CrossRefGoogle Scholar
  4. 4.
    Y. Ido and T. Tanahashi,J. Phys. Soc. Jap.,60, 466 (1991).CrossRefGoogle Scholar
  5. 5.
    Y. Ido, T. Tanahaschi, and M. Kiya, “A complete set of basic equations for magnetic fluids”, in:Proceedings of the 6th International Confernece on Magnetic Fluids: Program and Abstracts. Pais, July 20–24, 1992 (R. Massard, ed.), Univ. Curie, Paris (1992), p. 114.Google Scholar
  6. 6.
    C. Saluena, A. Peves-Madrid, and J. M. Rubi, “The viscosity of a suspension of elongated magnetic dipoles”, in:Proceedings of the 6th International Conference on Magnetic Fluids: Program and Abstract. Paris July 20–24. 1992 (R. Massard, ed.), Univ. Curie, Paris (1992), p. 102.Google Scholar
  7. 7.
    Yu. L. Raikher and V. V. Rusakov, “Orientational dynamics of a magnetic fluid with a viscoelastic base”, in:Proceedings of the 6th International Conference on Magnetic Fluids: Program and Abstracts. Paris, July 20–24, 1992 (R. Massard, ed.), Univ. Curie, Paris (1992), p. 340.Google Scholar
  8. 8.
    B. N. Felderhof and R. B. Jones,Phys. Rev. E,48, 1142 (1993).CrossRefADSGoogle Scholar
  9. 9.
    B. N. Felderhof and R. B. Jones,Phys. Rev. E,48, 1084 (1993).CrossRefADSGoogle Scholar
  10. 10.
    T. K. Kalaf and T. M. Wu,Phys. Rev. B,18, 448 (1978).CrossRefADSGoogle Scholar
  11. 11.
    M. Muller and H.-J. Guntherodt,J. Magn. Mater,15, 1345 (1980).CrossRefADSGoogle Scholar
  12. 12.
    I. A. Vakarchuk, Yu. K. Rudavskii, and G. V. Ponedilok, “Microscopic theory of the liquid state systems of magnetic atoms”, [in Russian], Preprint ITF-80-135P, Inst. Theor. Phys., Kiev (1980).Google Scholar
  13. 13.
    I. A. Vakarchuk, Yu. K. Rudavskii, and G. V. Ponedilok,Ukr. Fiz. Zh,27, 1414 (1982).Google Scholar
  14. 14.
    I. A. Vakarchuk, G. V. Ponedilok, and Yu. K. Rudavskii,Theor. Math. Phys.,58, 291 (1984).CrossRefMathSciNetGoogle Scholar
  15. 15.
    I. A. Vakarchuk and I. F. Margolych, “Theory of multisort disordered magnetic materials. Free energy”, Preprint ITF-83-163R. Inst. Theor. Phys., Kiev (1984).Google Scholar
  16. 16.
    I. A. Vakarchuk and I. F. Margolych,Theor. Math. Phys.,72, 1006 (1987).CrossRefGoogle Scholar
  17. 17.
    I. A. Akhiezer and I. T. Akhiezer,JETP,59, 68 (1984).Google Scholar
  18. 18.
    I. A. Akhiezer and I. T. Akhiezer,Fiz. Tverd Tela. 29, 2167 (1987).Google Scholar
  19. 19.
    V. I. Kalikmanov,Physica A. 183, 25 (1992).CrossRefADSGoogle Scholar
  20. 20.
    I. M. Mryglod and m. V. Tokarchuk. “Generalized hydrodynamic equations for a magnetic fluid”, [in Russian]. Preprint IFKS-93-5U, IFKS, Kiev (1993).Google Scholar
  21. 21.
    I. M. Mryglod and M. V. Tokarchuk,Cond. Mat. Phys., No. 2, 102 (1993).Google Scholar
  22. 22.
    I. M. Mryglod and M. V. Tokarchuk,Ukr. Fiz. Zh.,39, 838 (1994).Google Scholar
  23. 23.
    I. M. Mryglod, M. V. Tokarchuk, and R. Folk,Physica A,220, 325 (1995).CrossRefADSGoogle Scholar
  24. 24.
    I. M. Mryglod and R. Folk,Physica A,234, 129 (1996).CrossRefADSGoogle Scholar
  25. 25.
    D. N. Zubarev,Nonequilibrium Statistical Thermodynamics [in Russian], Nauka, Moscow (1971); Engl. transl: Plenum, New York (1974).Google Scholar
  26. 26.
    D. N. Zubarev, “Modern methods of statistical theory of nonequilibrium processes”, in:Modern Problems in Mathematics [in Russian], Vol. 15, VINITI, Moscow (1980), p. 131.Google Scholar
  27. 27.
    V. P. Kalashnikov and M. I. Auslender,Fiz. Met. Metalloved.,44, 710 (1977).Google Scholar
  28. 28.
    J. P. Boon and S. Yip,Molecular Hydrodynamics, McGraw-Hill, New York (1980).Google Scholar
  29. 29.
    I. M. Mryglod and M. V. Tokarchuk, “On statistical hydrodynamics of simple fluids”, in:Problems of Nuclear Science and Technology. Ser.: Nuclear-Physics Studies [in Russian], KhFTI, Khar'kov (1992), p. 134.Google Scholar
  30. 30.
    I. M. Mryglod and M. V. Tokarchuk, “On statistical hydrodynamics of simple fluids. Generalized transport coefficients”, [in Ukrainian], Preprint IFKS-91-6U IFKS, Kiev, (1991).Google Scholar
  31. 31.
    B. Robertson,Phys. Rev.,144, 151 (1966);160, 175 (1967).CrossRefADSMathSciNetGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • I. M. Mryglod
    • 1
  • M. V. Tokarchuk
    • 1
  1. 1.Institute of Condensed System PhysicsUkrainian National Academy of SciencesLvovUkraine

Personalised recommendations