Theoretical and Mathematical Physics

, Volume 115, Issue 2, pp 513–519 | Cite as

Differential calculus forq-deformed twistors

  • V. P. Akulov
  • S. A. Duplij
  • V. V. Chitov


A “short” version of the q-deformed differential calculus on the light cone using the twistor representation is proposed. The commutation relations between coordinates and momenta are obtained. The quasi-classical limit gives an exact shape for the off-shell shifting.


Commutation Relation Quantum Group Light Cone Differential Calculus Twistor Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Wess and B. Zumino,Nucl. Phys. (Proc. Suppl.) B,18, 302 (1990).CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    S. L. Woronwicz,Commun. Math. Phys.,122, 125 (1989).CrossRefADSGoogle Scholar
  3. 3.
    I. Arefeva and I. Volovich, “Quantum group particles and non-Archimedian geometry,” Preprint CERN TH-6137/91.Google Scholar
  4. 4.
    M. B. Green, J. H. Schwarz and E. Witten,Superstring Theory, Vol. 1, 2, Cambridge Univ., Cambridge (1987)zbMATHGoogle Scholar
  5. 5.
    L. D. Faddeev and P. N. Pyatov, “The differential calculus on linear quantum groups”, hep-th/9402070Google Scholar
  6. 6.
    V. P. Akulov and V. D. Gerschun, “Matched reduction of differential calculus on quantum groupsgl q (2,c).sl q (2,c), ande q(2),” q-alg/9509030.Google Scholar
  7. 7.
    J. Wess, B. Zumino and A. Schirmacher,Z. Phys. C,49, 317 (1990).Google Scholar
  8. 8.
    E. E. Demidov,Russ. Math. Surv.,48, 41 (1993).CrossRefMathSciNetGoogle Scholar
  9. 9.
    A. H. Clifford and G. B. Preston,The Algebraic Theory of Semigroups. Vol. 1, Amer. Math. Soc., Providence (1961).zbMATHGoogle Scholar
  10. 10.
    S. Duplij,J. Math. Phys.,32, 2959 (1991).zbMATHCrossRefADSMathSciNetGoogle Scholar
  11. 11.
    S. Duplij. “Noninvertibility and ‘semi-’ analogues of (super) manifolds, fiber bundles, and homotopies,” Preprint KL-TH-96/10, Univ. Kaiserslautern, Kaiserlautern; q-alg/9609022; to appear inJ. Math. Phys. Google Scholar
  12. 12.
    B.M. Zupnik,Theor. Math. Phys.,95, 403 (1993).CrossRefMathSciNetGoogle Scholar
  13. 13.
    L. L. Vaksman and L. I. Korogodsky, “Harmonic analysis on quantum hyperboloids,” Preprint ITP-90-27P. Institute for Theoretical Physics, Kiev.Google Scholar
  14. 14.
    L. D. Faddeev, N. Reshetikhin and L. A. Takhtadzhyan,Leningrad Math. J.,1, 193 (1990).zbMATHMathSciNetGoogle Scholar
  15. 15.
    E. Cartan,La Theorie des Spineurs, Mercier, Paris (1938).Google Scholar
  16. 16.
    R. Penrose,Math. Proc. Cambridge Philos. Soc.,51, 406 (1955).zbMATHMathSciNetCrossRefADSGoogle Scholar
  17. 17.
    J. A. Azcarraga, P. P. Kulish, and F. Rodenas, “Quantum groups and deformed special relativity,” Preprint FTUV 94-21, Universidad de Valencia, Valencia; hep-th/9405161.Google Scholar

Copyright information

© Plenum Publishing Corporation 1998

Authors and Affiliations

  • V. P. Akulov
    • 1
  • S. A. Duplij
    • 2
  • V. V. Chitov
    • 2
  1. 1.Institute for Theoretical Physics, National Scientific CenterKharkv Physicotechnical InstituteKharkovUkraine
  2. 2.Department of PhysicsKharkov State UniversityKharkovUkraine

Personalised recommendations