, Volume 49, Issue 3–4, pp 166–172 | Cite as

Effects of electron beam irradiation on cork volatile compounds by gas chromatography-mass spectrometry

  • M. Careri
  • V. Mazzoleni
  • M. Musci
  • R. Molteni


The effects of electron beam irradiation on cork volatile compounds was studied at different doses (25, 100, 1000 kGy). Volatiles were isolated from cork using the dynamic headspace-sampling technique, then identified by gas chromatography-mass spectrometry (GC-MS). Similar gas chromatographic profiles were obtained for non-irradiated and irradiated corks. Quantitative differences induced by the three doses were evaluated by calculating peak areas for each compound identified. The quantitative differences between non-irradiated corks and those irradiated at 25 kGy were significant for only a few substances, whereas significant quantitative differences were found in samples irradiated at 100 and 1000 kGy. For these doses, the content of volatile compounds generally increased, especially that of aliphatic hydrocarbons and carbonyl compounds. The behaviour of radiolytic hydrocarbons indicates that the mechanisms proposed for their formation in irradiated foods could take place even in cork.

Key Words

Gas chromatography-mass spectrometry Dynamic headspace sampling Cork volatiles Electron beam irradiation Radiolysis-induced compounds 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    T. H. Lee, R. F. Simpson, “Wine Microbiology and Biotechnology” G. H. Fleet, Ed., Harwood Academic Publ., Chur, 1994, p. 353.Google Scholar
  2. [2]
    E. J. Waters, Z. Peng, K. F. Pocock, P. J. Williams, Austral. J. Grape Wine Res.2, 191 (1996).CrossRefGoogle Scholar
  3. [3]
    H. Delincée, Ann. Fals. Exp. Chim.90, 331 (1997).Google Scholar
  4. [4]
    J. Rochard, G. Romanet, G. Bureau, J. P. Gyr, Vigneron Champenois109, 19 (1988).Google Scholar
  5. [5]
    V. Mazzoleni, P. Caldentey, M. Careri, A. Mangia, O. Colagrande, Am. J. Enol. Vitic.45, 401 (1994).Google Scholar
  6. [6]
    H. Van der Dool, P. D. Kratz, J. Chromatogr.11, 463 (1963).CrossRefGoogle Scholar
  7. [7]
    L. Mondello, P. Dugo, A. Cotroneo, A. Basile, G. Dugo, Proceedings 2o Congresso Chimica degli Alimenti, Giardini Naxos (Me), 24–27/5/95.Google Scholar
  8. [8]
    K. C. Wong, F. Y. Lai, Flavour Fragrance J.11, 61 (1996).CrossRefGoogle Scholar
  9. [9]
    G. R. Takeoka, R. A. Flath, M. Guntert, W. Jennings, J. Agric. Food Chem.36, 553 (1988).CrossRefGoogle Scholar
  10. [10]
    L. Sagrero-Nieves, J. P. Bartley, Flavour Fragrance J.11, 49 (1996).CrossRefGoogle Scholar
  11. [11]
    N. Narain, T. C. Y. Hsieh, C. E. Johnson, J. Food Sci.55, 1303 (1990).CrossRefGoogle Scholar
  12. [12]
    F. Battistutta, L. S. Conte, R. Zironi, A. Carruba, C. Leto, T. Tuttamondo, Proceeding 2o Congresso Chimical degli Alimenti, Giardini Naxos (Me), 24–27/5/95.Google Scholar
  13. [13]
    S. Rocha, I. Delgadillo, A. J. Ferrer Correia, J. Agric. Food Chem.44, 865 (1996).CrossRefGoogle Scholar
  14. [14]
    S. Rocha, I. Delgadillo, A. J. Ferrer Correia, J. Agric. Food Chem.44, 872 (1996).CrossRefGoogle Scholar
  15. [15]
    G. Fischbock, R. Kellner, W. Pfannhauser, Proceedings of the 5th International Flavor Conference, “Frontiers of flavor”, G. Charalambous, Ed., Porto Carras, Greece, 147 (1988).Google Scholar
  16. [16]
    E. Marchioni, G. Jamet, C. Hasselmann, Ann. Fals Exp. Chim.90, 367 (1997).Google Scholar
  17. [17]
    P. J. Holloway, Chem. Phys. Lipids9, 158 (1972).CrossRefGoogle Scholar

Copyright information

© Friedr. Vieweg & Sohn Verlagsgesellschaft mbH 1999

Authors and Affiliations

  • M. Careri
    • 1
  • V. Mazzoleni
    • 2
  • M. Musci
    • 1
  • R. Molteni
    • 2
  1. 1.Dipartimento di Chimica Generale ed Inorganica, Chimica Analitica, Chimica FisicaUniversità di ParmaParmaItaly
  2. 2.Istituto di EnologiaUniversità Cattolica del Sacro CuorePiacenzaItaly

Personalised recommendations