The enumeration of minimal phylograms

  • Ludwig Nastansky
  • Stanley M. Selkow
  • Neil F. Stewart


We consider the problem of finding a minimal tree to a set of nodes (of species represented byd characters) in a space ofd-dimensions subject to the hypothesis that evolution is nonconvergent and irreversible. A solution to this problem is formulated, using integer linear programming techniques.


Linear Programming Problem Steiner Problem Direct Predecessor Research Center Report Evolutionary Descent 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Camin, J. H. and R. R. Sokal. 1965. “A Method for Deducing Branching Sequences in Phylogeny.”Evolution,19, 311–326.CrossRefGoogle Scholar
  2. Dantzig, G. B. 1963.Linear Programming and Extensions. Princeton: Princeton University Press.zbMATHGoogle Scholar
  3. Dreyfus, S. E. and R. A. Wagner. 1970. “The Steiner Problem in Graphs.” Operation Research Center Report ORC-70-32, Berkeley: University of California Press.Google Scholar
  4. Hadley, G. 1963.Linear Programming. Reading, Massachusetts: Addison-Wesley.Google Scholar
  5. Hendrickson, J. A. Jr. 1968. “Clustering in Numerical Cladistics: a Minimum-Length Directed Tree Problem.”Math. Biosci. 3, 371–381.CrossRefGoogle Scholar
  6. Levin, A. Ju. 1971. “Algorithm for the Shortest Connection of a Group of Graph Vertices.”Soviet Math. Dokl. 12, No. 5, 1477–1481.zbMATHGoogle Scholar
  7. Jardine, N. and R. Sibson. 1971.Mathematical Taxonomy. New York: John Wiley.zbMATHGoogle Scholar
  8. Sokal, R. R. and P. H. A. Sneath. 1963.Principles of Numerical Taxonomy. San Francisco: Freeman.Google Scholar

Copyright information

© Society for Mathematical Biology 1973

Authors and Affiliations

  • Ludwig Nastansky
    • 1
  • Stanley M. Selkow
    • 1
  • Neil F. Stewart
    • 1
  1. 1.Département d’informatiqueUniversité de MontréalMontréalQuébec

Personalised recommendations