International Journal of Thermophysics

, Volume 18, Issue 2, pp 459–469 | Cite as

Measurements of thermophysical properties of molten silicon by a high-temperature electrostatic levitator

  • W. K. Rhim
  • S. K. Chung
  • A. J. Rulison
  • R. E. Spjut
Article

Abstract

Several thermophysical properties of molten silicon measured by the high-temperature electrostatic levitator at JPL are presented. They are density, constant-pressure specific heat capacity, hemispherical total emissivity, and surface tension. Over the temperature range investigated (1350<Tm<1825 K), the measured liquid density (in g·cm−3) can be expressed by a quadratic function,p(T)=pm−1.69×10−4(T−Tm)−1.75×10−7(T−Tm)2 withTm andpm being 1687 K and 2.56 g·cm−3, respectively. The hemispherical total emissivity of molten silicon at the melting temperature was determined to be 0.18, and the constant-pressure specific heat was evaluated as a function of temperature. The surface tension (in 10−3 N·m−1) of molten silicon over a similar temperature range can be expressed by σ(T)=875–0.22(T−Tm).

Key Words

density electrostatic levitation hemispherical total emissivity molten silicon specific heat surface tension 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. K. Rhim, S. K. Chung, D. Barber, K. F. Man, G. Gutt, A. Rulison, and R. E. Spjut,Rev. Sci. Instrum. 64:2961 (1993).CrossRefADSGoogle Scholar
  2. 2.
    S. K. Chung, D. Thiessen, Y. J. Kim, and W. K. Rhim,Rev. Sci. Instrum. 67:3175 (1996).CrossRefADSGoogle Scholar
  3. 3.
    J. W. S. Rayleigh,Phil. Mag. 14:184, (1882).Google Scholar
  4. 4.
    J. Q. Feng and K. V. Beard,Proc. R. Soc. Lond. A 430:133, (1990).MATHADSCrossRefGoogle Scholar
  5. 5.
    V. M. Glazov, S. N. Chizevskaya, and N. N. Glagoleva,Liquid Semiconductors (Plenum Press, New York, 1969), p. 61.Google Scholar
  6. 6.
    T. Iida and R. I. L. Guthrie,The Physical Properties of Liquid Metals (Clarendon Press, Oxford, 1988), p. 71.Google Scholar
  7. 7.
    H. Sasaki, E. Tokizaki, K. Terashima, and S. Kimura,Jpn. J. Appl. Phys. 33:3803 (1994).CrossRefADSGoogle Scholar
  8. 8.
    A. J. Rulison and W. K. Rhim,Metallurg. Mater. Trans. B 26B:503 (1995).ADSGoogle Scholar
  9. 9.
    S. Krishnan, J. K. R. Weber, P. C. Nordine, R. A. Schiffman, R. H. Hauge, and J. L. Margrave,High Temp. Sci. 30:137 (1991).Google Scholar
  10. 10.
    A. J. Rulison and W. K. Rhim,Phys. Chem. Liquids 30:169 (1995).Google Scholar
  11. 11.
    S. C. Hardy,J. Crystal Growth 69:456 (1984).CrossRefADSGoogle Scholar
  12. 12.
    M. Pryzborowski, T. Hibiya, M. Eguchi, and I. Egry,J. Jpan. Assoc. Crystal Growth 21(3):224 (1994).Google Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • W. K. Rhim
    • 1
  • S. K. Chung
    • 1
  • A. J. Rulison
    • 1
  • R. E. Spjut
    • 2
  1. 1.Jet Propulsion LaboratoryCalifornia Institute of TechnologyPasadenaUSA
  2. 2.Department of EngineeringHarvey Mudd CollegeClaremontUSA

Personalised recommendations