International Journal of Thermophysics

, Volume 18, Issue 3, pp 719–732 | Cite as

A vibrating tube flow densitometer for measurements with corrosive solutions at temperatures up to 723 K and pressures up to 40 MPa

  • V. Hynek
  • M. Obšil
  • J. Quint
  • J. -P. E. Grolier
Article

Abstract

A new version of a vibrating tube flow densitometer has been designed permitting measurements of density differences between two fluids in the temperature range from 298 to 723 K and at pressures up to 40 MPa. The instrument is equipped with a Pt/Rh20 vibrating tube (1.6-mm o.d.) and a Pt/Rh10 transporting tube (1.2-mm o.d.) permitting measurements with highly corrosive liquids. The period of oscillation of the tube is about 7.5 ms, with a typical stability better than 10−4% over about a 1-h period over the entire temperature interval. The calibration constantK at room temperature is about 530 kg·m−3·ms−2, with a temperature coefficient of approximately −0.13kg·m−3·ms−2·K−1, and is practically pressure independent. It can be determined by calibration with a reproducibility generally better than 0.1%. The instrument was tested with NaCl(aq) solutions in the temperature range from 373 to 690 K for density differences between sample and reference liquid ranging from 200 to 2 kg·m−3; the corresponding errors are believed to be below 0.3 and 5%, respectively. A highly automated temperature control maintains the temperature of the tube stable to within ±0.02 K.

Key Words

aqueous solutions critical point flow densitometer high temperature high pressure vibrating tube 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. Kratky, H. Leopold, and H. Stabinger,Z. Agew. Phys. 27:273 (1969).Google Scholar
  2. 2.
    D. R. Defibaugh and G. Morrison,J. Chem. Eng. Data 37:107 (1992).CrossRefGoogle Scholar
  3. 3.
    L. A. Galicia-Luna, D. Richon, and H. Renon,J. Chem. Eng. Data. 39:424 (1994).CrossRefGoogle Scholar
  4. 4.
    C. Bouchot, Ph.D. thesis (École de Mines, Paris, 1995).Google Scholar
  5. 5.
    J. M. Simonson, C. S. Oakes, and R. J. Bodnar,J. Chem. Thermodyn. 26:345 (1994).CrossRefGoogle Scholar
  6. 6.
    C. S. Oakes, J. M. Simonson, and R. J. Bodnar,J. Solut. Chem. 24:897 (1995).CrossRefGoogle Scholar
  7. 7.
    H. J. Albert and R. H. Wood,Rev. Sci. Instrum. 55:589 (1984).CrossRefADSGoogle Scholar
  8. 8.
    V. Majer, J. A. Gates, A. Inglese, and R. H. Wood,J. Chem. Thermodyn. 20:949 (1988).CrossRefGoogle Scholar
  9. 9.
    R. H. Wood, C. W. Buzzard, and V. Majer,Rev. Sci Instrum. 60:493 (1989).CrossRefADSGoogle Scholar
  10. 10.
    V. Majer, A. Inglese, and R. H. Wood,J. Chem. Thermodyn. 21:321 (1989).CrossRefGoogle Scholar
  11. 11.
    V. Majer, A. Inglese, and R. H. Wood,J. Chem. Thermodyn. 21:397 (1989).CrossRefGoogle Scholar
  12. 12.
    H. R. Corti, R. F. Prini, and F. Svarz,J. Solut. Chem. 19:793 (1990).CrossRefGoogle Scholar
  13. 13.
    R. F. Chang, and M. R. Moldover,Rev. Sci. Instrum. 67:in press (1996).Google Scholar
  14. 14.
    L. Hnedkovsky, I. Cibulka, and V. Hynek, in preparation.Google Scholar
  15. 15.
    V. Majer, R. Crovetto, and R. H. Wood,J. Chem. Thermodyn. 23:333 (1991).CrossRefGoogle Scholar
  16. 16.
    R. Crovetto, R. H. Wood, and V. Majer,J. Chem. Thermodyn. 23:1139 (1991).Google Scholar
  17. 17.
    V. Majer, Lu Hui, R. Crovetto, and R. H. Wood,J. Chem. Thermodyn. 23:213 (1991).CrossRefGoogle Scholar
  18. 18.
    V. Majer, Lu Hui, R. Crovetto, R. H. Crovetto, and R. H. Wood,J. Chem. Thermodyn. 23:365 (1991).Google Scholar
  19. 19.
    V. Majer and R. H. Wood,J. Chem. Thermodyn. 26:1143 (1994).CrossRefGoogle Scholar
  20. 20.
    L. Hnedkovsky, V. Majer, and R. H. Wood,J. Chem. Thermodyn. 27:801 (1995).CrossRefGoogle Scholar
  21. 21.
    L. Hnedkovsky, R. H. Wood, and V. Majer,J. Chem. Thermodyn. 26:125 (1996).CrossRefGoogle Scholar
  22. 22.
    D. G. Archer,J. Phys. Chem. Ref. Data 21:793 (1992).ADSCrossRefGoogle Scholar

Copyright information

© Plenum Publishing Corporation 1997

Authors and Affiliations

  • V. Hynek
    • 1
  • M. Obšil
    • 2
  • J. Quint
    • 2
  • J. -P. E. Grolier
    • 2
  1. 1.Department of Physical ChemistryInstitute of Chemical TechnologyPragueCzech Republic
  2. 2.Laboratoire de Thermodynamique et Génie ChimiqueUniversité Blaise Pascal/CNRSClermont-FerrandFrance

Personalised recommendations