Discrete & Computational Geometry

, Volume 6, Issue 3, pp 485–524

Triangulating a simple polygon in linear time

  • Bernard Chazelle
Article

Abstract

We give a deterministic algorithm for triangulating a simple polygon in linear time. The basic strategy is to build a coarse approximation of a triangulation in a bottom-up phase and then use the information computed along the way to refine the triangulation in a top-down phase. The main tools used are the polygon-cutting theorem, which provides us with a balancing scheme, and the planar separator theorem, whose role is essential in the discovery of new diagonals. Only elementary data structures are required by the algorithm. In particular, no dynamic search trees, of our algorithm.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Aggarwal and J. Wein, Computational Geometry, Technical Report MIT/LCS/RSS 3, MIT, Cambridge, MA, August 1988.Google Scholar
  2. 2.
    B. G. Baumgart, A polyhedron representation for computer vision,Proc. 1975 National Comput. Conf., AFIPS Conference Proceedings, Vol. 44, AFIPS Press, Montvale, NJ (1975), pp. 589–596.Google Scholar
  3. 3.
    H. Booth, Some fast Algorithms on Graph and Trees, Ph.D. Thesis, Technical Report CS-TR 296-60, Princeton University, Princeton, NJ, 1990.Google Scholar
  4. 4.
    B. Chazelle, A theorem on polygon cutting with applications,Proc. 23rd Ann. IEEE Symp. on Found. of Comput. Sci. (1982), pp. 339–349.Google Scholar
  5. 5.
    B. Chazelle and L. J. Guibas, Visibility and intersection problems in plane geometry,Discrete Comput. Geom. 4 (1989), 551–581.MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    B. Chazelle and J. Incerpi, Triangulation and shape-complexity,ACM Trans. Graphics 3 (1984), 135–152.CrossRefMATHGoogle Scholar
  7. 7.
    K. Clarkson, R. E. Tarjan, and C. J. Van Wyk, A fast Las Vegas algorithm for triangulating a simple polygon,Discrete Comput. Geom. 4 (1989), 423–432.MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    D. P. Dobkin, D. L. Souvaine, and C. J. Van Wyk, Decomposition and intersection of simple splinegons,Algorithmica 3 (1988), 473–485.MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    H. Edelsbrunner, L. J. Guibas, and J. Stolfi, Optimal point location in a monotone subdivision,SIAM J. Comput. 15 (1986), 317–340.MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    H. Edelsbrunner and E. P. Mücke, Simulation of simplicity: a technique to cope with degenerate cases in geometric algorithms,Proc. 4th Ann. ACM Symp. Comput. Geom. (1988), pp. 118–133.Google Scholar
  11. 11.
    A. Fournier and D. Y. Montuno, Triangulating simple polygons and equivalent problems,ACM Trans. Graphics 3 (1984), 153–174.CrossRefMATHGoogle Scholar
  12. 12.
    M. R. Garey, D. S. Johnson, F. P. Preparata, and R. E. Tarjan, Triangulating a simple polygon,Inform. Process. Lett. 7 (1978), 175–180.MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    L. J. Guibas and J. Hershberger, Optimal shortest path queries in a simple polygon,J. Comput. System Sci. 32 (1989), 126–152.MathSciNetCrossRefGoogle Scholar
  14. 14.
    L. J. Guibas, J. Hershberger, D. Leven, M. Sharir, and R. E. Tarjan, Linear time algorithms for visibility and shortest path problems inside triangulated simple polygons,Algorithmica 2 (1987), 209–233.MathSciNetCrossRefMATHGoogle Scholar
  15. 15.
    L. J. Guibas and J. Stolfi, Primitives for the manipulation of general subdivisions and the computation of Voronoi diagrams,ACM Trans. Graphics 4 (1985), 75–123.CrossRefGoogle Scholar
  16. 16.
    J. Hershberger, Finding the visibility graph of a simple polygon in time proportional to its size,Algorithmica 4 (1989), 141–155.MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    S. Hertel and K. Mehlhorn, Fast triangulation of a simple polygon,Proc. Conf. Found. Comput. Theory, Lecture Notes on Computer Science, Vol. 158, Springer-Verlag, Berlin (1983), pp. 207–218.CrossRefGoogle Scholar
  18. 18.
    K. Hoffman, K. Mehlhorn, P. Rosenstiehl, and R. E. Tarjan, Sorting Jordan sequences in linear time using level-linked search trees,Inform. and Control 68 (1986), 170–184.MathSciNetCrossRefGoogle Scholar
  19. 19.
    D. G. Kirkpatrick, Optimal search in planar subdivisions,SIAM J. Comput. 12 (1983), 28–35.MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    D. G. Kirkpatrick, M. M. Klawe, and R. E. Tarjan,O(n log logn) polygon triangulation with simple data structures,Proc. 6th Ann. ACM Symp. Comput. Geom. (1990), pp. 34–43.Google Scholar
  21. 21.
    R. J. Lipton and R. E. Tarjan, A separator theorem for planar graphs,SIAM J. Comput. 36 (1979), 177–189.MathSciNetMATHGoogle Scholar
  22. 22.
    R. J. Lipton and R. E. Tarjan, Applications of a planar separator theorem,SIAM J. Comput. 9 (1980), 615–627.MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    D. E. Muller and F. P. Preparata, Finding the intersection of two convex polyhedra,Theoret. Comput. Sci. 7 (1978), 217–236.MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    J. O'Rourke,Art Gallery Theorems and Algorithms, Oxford University Press, New York, 1987.MATHGoogle Scholar
  25. 25.
    R. Seidel, A simple and fast incremental randomized algorithm for computing trapezoidal decompositions and for triangulating polygons, Manuscript, 1990.Google Scholar
  26. 26.
    S. Suri, A linear time algorithm for minimum link paths inside a simple polygon,J. Comput. Vision Graphics Image Process. 35 (1986), 99–110.CrossRefMATHGoogle Scholar
  27. 27.
    R. E. Tarjan and C. J. Van Wyk, AnO(n log logn)-time algorithm for triangulating a simple polygon,SIAM J. Comput. 17 (1988), 143–178.MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    G. Toussaint,Computational Morphology, North-Holland, Amsterdam, 1988.MATHGoogle Scholar
  29. 29.
    G. Toussaint, An Output-Complexity-Sensitive Polygon Triangulation Algorithm, Report SICS 86.3, McGill University, Montreal, 1988.Google Scholar
  30. 30.
    G. Toussaint and D. Avis, On a convex hull algorithm for polygons and its applications to triangulation problems,Pattern Recognition 15 (1982), 23–29.MathSciNetCrossRefGoogle Scholar
  31. 31.
    C. K. Yap, A geometric consistency theorem for a symbolic perturbation scheme,Proc. 4th Ann. ACM Symp. Comput. Geom. (1988), pp. 134–142.Google Scholar

Copyright information

© Springer-Verlag New York Inc 1991

Authors and Affiliations

  • Bernard Chazelle
    • 1
  1. 1.Department of Computer SciencePrinceton UniversityPrincetonUSA

Personalised recommendations