Discrete & Computational Geometry

, Volume 6, Issue 3, pp 343–367 | Cite as

Higher-dimensional voronoi diagrams in linear expected time

  • Rex A. Dwyer
Article

Abstract

A general method is presented for determining the mathematical expectation of the combinatorial complexity and other properties of the Voronoi diagram ofn independent and identically distributed points. The method is applied to derive exact asymptotic bounds on the expected number of vertices of the Voronoi diagram of points chosen from the uniform distribution on the interior of ad-dimensional ball; it is shown that in this case, the complexity of the diagram is ∵(n) for fixedd. An algorithm for constructing the Voronoid diagram is presented and analyzed. The algorithm is shown to require only ∵(n) time on average for random points from ad-ball assuming a real-RAM model of computation with a constant-time floor function. This algorithm is asymptotically faster than any previously known and optimal in the average-case sense.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    F. Affentranger, Random spheres in a convex body,Arch. der Math. 55 (1990), 74–81.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    D. Avis and B. K. Bhattacharya, Algorithms for computingd-dimensional Voronoi diagrams and their duals, inAdvances in Computing Research: Computational Geometry, F. P. Preparata, ed., pp. 159–180, JAI Press, Greenwich, CT, 1983.Google Scholar
  3. 3.
    J. L. Bentley, B. W. Weide, and A. C. Yao, Optimal expected-time algorithms for closest-point problems,ACM Trans. Math. Software 6 (1980), 563–580.MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    W. H. Beyer,CRC Standard Mathematical Tables, 27th ed., CRC Press, Boca Raton, FL, 1984.Google Scholar
  5. 5.
    B. Bhattacharya, Worst-case Analysis of a Convex Hull Algorithm, Technical Report, Simon Fraser University, 1982.Google Scholar
  6. 6.
    A. Bowyer, Computing Dirichlet tessellations,Comput. J. 24 (1981), 162–166.MathSciNetCrossRefGoogle Scholar
  7. 7.
    K. Q. Brown, Geometric Transforms for Fast Geometric Algorithms, Ph.D. thesis, Carnegie-Mellon University, Pittsburgh, PA, 1979.Google Scholar
  8. 8.
    W. Browstow, J.-P. Dussault, and B. L. Fox, Construction of Voronoi polyhedra,J. Comput. Phys. 29 (1978), 81–97.MathSciNetCrossRefGoogle Scholar
  9. 9.
    D. R. Chand and S. S. Kapur, An algorithm for convex polytopes,J. Assoc. Comput. Math. 17 (1970), 78–86.MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    R. A. Dwyer, A faster divide-and-conquer algorithm for constructing Delaunay triangulations,Algorithmica 2 (1987), 137–151.MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    R. A. Dwyer, On the convex hull of random points in a polytope,J. Appl. Probab. 25 (1988), 688–699.MathSciNetCrossRefMATHGoogle Scholar
  12. 12.
    H. Edelsbrunner and R. Seidel, Voronoi diagrams and arrangements,Discrete Comput. Geom. 1 (1986), 25–44.MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    B. Efron, The convex hull of a random set of points,Biometrika 52 (1965), 331–342.MathSciNetCrossRefMATHGoogle Scholar
  14. 14.
    J. L. Finney, A procedure for the construction of Voronoi polyhedra,J. Comput. Phy. 32 (1979), 137–143.CrossRefGoogle Scholar
  15. 15.
    E. N. Gilbert, Random subdivisions of space into crystals,Ann. Math. Statist. 33 (1962), 958–972.MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    M. G. Kendall,A Course in the Geometry of n Dimensions, Hafner, New York, 1961.MATHGoogle Scholar
  17. 17.
    A. Maus, Delaunay triangulation and the convex hull ofn points in expected linear time,BIT 24 (1984), 151–163.MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    J. L. Meijering, Interface area, edge length, and number of vertices in crystal aggregates with random nucleations,Philips Res. Rep. 8 (1953), 270–290.MATHGoogle Scholar
  19. 19.
    R. E. Miles, Isotropic random simplices,Adv. Appl. Probab. 3 (1971), 353–382.MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    R. E. Miles, A synopsis of “Poisson flats in Euclidean spaces”, inStochastic Geometry, E. F. Harding and D. G. Kendall, eds., pp. 202–227, Wiley, New York, 1974.Google Scholar
  21. 21.
    H. Raynaud, Sur l'envelope convexe des nuages des points aléatoires dansR n, I,J. Appl. Probab 7 (1970), 35–48.MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    A. Rényi and R. Sulanke, Über die konvexe Hülle vonn zufällig gewählten Punkten,Z. Wahrsch. Verw. Gebiete 2 (1963), 75–84.CrossRefMATHGoogle Scholar
  23. 23.
    A. Rényi and R. Sulanke, Über die konvexe Hülle vonn zufällig gewählten Punkten, II,Z. Wahrsch. Verw. Gebiete 3 (1964), 138–147.CrossRefMATHGoogle Scholar
  24. 24.
    R. Seidel, The complexity of Voronoi diagrams in higher dimensions, inProc. 20th Ann. Allerton Conf. on Communication, Control, and Computing, pp. 94–95, University of Illinois at Urbana-Champaign, 1982.Google Scholar
  25. 25.
    R. Seidel, Constructing higher-dimensional convex hulls at logarithmic cost per face, inProc. 18th ACM Symp. on Theory of Computing, pp. 404–413, ACM, 1986.Google Scholar
  26. 26.
    R. Seidel, On the number of faces in higher-dimensional Voronoi diagrams, inProc. 3rd Ann. Symp. on Computational Geometry, pp. 181–185, ACM, 1987.Google Scholar
  27. 27.
    G. Swart, Finding the convex hull facet by facet,J. Algorithms 6 (1985), 17–48.MathSciNetCrossRefMATHGoogle Scholar
  28. 28.
    M. Tanemura, T. Ogawa, and N. Ogita, A new algorithm for three-dimensional Voronoi tessellation,J. Comput. Phys. 51 (1983), 191–207.MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    R. E. Tarjan,Data Structures and Network Algorithms, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 44, Society of Industrial and Applied Mathematics, Philadelphia, PA, 1983.CrossRefGoogle Scholar
  30. 30.
    A. H. Thiessen, Precipitation averages for large areas,Monthly Weather Rev. 39 (1911), 1082–1084.CrossRefGoogle Scholar
  31. 31.
    F. G. Tricomi,Funzioni Ipergeometriche Confluente, Edizioni Cremonese, Rome, 1954.Google Scholar
  32. 32.
    G. Voronoi, Nouvelles applications des parametres continus à la theorie des formes quadratique, deuxième mémoire: recherches sur les parallélloèdres primitifs,J. Reine Angew. Math. 134 (1908), 198–287.MathSciNetMATHGoogle Scholar
  33. 33.
    D. F. Watson, Computing then-dimensional Delaunay tessellation with application to Voronoi polytopes,Comput. J. 24 (1981), 167–172.MathSciNetCrossRefGoogle Scholar
  34. 34.
    E. T. Whittaker and G. N. Watson,A Course of Modern Analysis, 4th edn., Cambridge University Press, Cambridge, 1927.MATHGoogle Scholar
  35. 35.
    E. Wigner and F. Seitz, On the constitution of metallic sodium,Phy. Rev. 43, (1933), 804–810.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1991

Authors and Affiliations

  • Rex A. Dwyer
    • 1
  1. 1.Department of Computer ScienceNorth Carolina State UniversityRaleighUSA

Personalised recommendations