Discrete & Computational Geometry

, Volume 12, Issue 4, pp 465–479 | Cite as

A decomposition of 2-weak vertex-packing polytopes

  • E. Steingrímsson
Article

Abstract

The 2-weak vertex-packing polytope of a loopless graphG withd vertices is the subset of the unitd-cube satisfyingxi+xj≤1 for every edge (i,j) ofG. The dilation by 2 of this polytope is a polytope
with integral vertices. We triangulate
with lattice simplices of minimal volume and label the maximal simplices with elements of the hyperoctahedral groupBd. This labeling gives rise to a shelling of the triangulation
of
, where theh-vector of
(and the Ehrharth*-vector of
can be computed as a descent statistic on a subset ofBd defined in terms ofG. A recursive way of computing theh-vector of
is also given, and a recursive formula for the volume of
.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    U. Betke and P. McMullen: Lattice points in lattice polytopes,Monatsh. Math. 99 (1985), 253–265.MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    A. Björner: Shellable and Cohen-Macaulay partially ordered sets,Trans. Amer. Math. Soc. 260 (1980), 159–183.MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    A. Björner: Topological methods,Handbook of combinatorics (R. Graham, M. Grötschel, and L. Lovász, eds.), North-Holland, Amsterdam, to appear.Google Scholar
  4. 4.
    V. Chvátal: On certain polytopes associated with graphs,J. Combin. Theory Ser. B 18 (1975), 138–154.MATHCrossRefGoogle Scholar
  5. 5.
    J. Lee and W. D. Morris, Geometric comparison of combinatorial polytopes, CORE Discussion Paper 9216, 1992.Google Scholar
  6. 6.
    P. McMullen: The maximum numbers of faces of a convex polytope.Mathematika 17 (1970), 179–184.MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    J. Munkres:Elements of Algebraic Topology, Addison-Wesley, Menlo Park, CA (1984).MATHGoogle Scholar
  8. 8.
    M. Padberg: On the facial structure of set packing polyhedra,Math. Programming 5 (1973), 199–215.MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    V. Reiner: Signed permutation statistics,European J. Combin. 14 (1993), 553–567.MATHMathSciNetCrossRefGoogle Scholar
  10. 10.
    R. Stanley: Decomposition of rational convex polytopes,Ann. Discrete Math. 6 (1980), 333–342.MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    R. Stanley,Enumerative Combinatorics, vol. I. Wadsworth & Brooks/Cole, Pacific Grove, CA, 1986.MATHCrossRefGoogle Scholar
  12. 12.
    R. Stanley: Two poset polytopes,Discrete Comput. Geom. 1 (1986), 9–23.MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    R. Stanley: Generalizedh-vectors, intersection cohomology of toric varieties, and related results,Commutative Algebra and Combinatorics, Advanced Studies in Pure Mathematics, Vol. 11, 1987, pp. 187–213.Google Scholar
  14. 14.
    E. Steingrímsson: Permutation statistics of indexed and poset permutations, Ph.D. thesis, Massachusetts Institute of Technology, 1991.Google Scholar
  15. 15.
    E. Steingrímsson: Weak vertex-packing polytopes, Preprint 1993:19, Matematiska Institutionen CTH & GU.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1994

Authors and Affiliations

  • E. Steingrímsson
    • 1
  1. 1.Matematiska Institutionen CTH & GUGöteborgSweden

Personalised recommendations