Discrete & Computational Geometry

, Volume 12, Issue 3, pp 263–280 | Cite as

Finding a minimum-weightk-link path in graphs with the concave Monge property and applications

  • A. Aggarwal
  • B. Schieber
  • T. Tokuyama


LetG be a weighted, complete, directed acyclic graph (DAG) whose edge weights obey the concave Monge condition. We give an efficient algorithm for finding the minimum-weightk-link path between a given pair of vertices for any givenk. The time complexity of our algorithm is\(O(n\sqrt {k\log n} + n\log n)\). Our algorithm uses some properties of DAGs with the concave Monge property together with the parametric search technique. We apply our algorithm to get efficient solutions for the following problems, improving on previous results: (1) Finding the largestk-gon contained in a given convex polygon. (2) Finding the smallestk-gon that is the intersection ofk half-planes out ofn half-planes defining a convexn-gon. (3) Computing maximumk-cliques of an interval graph. (4) Computing length-limited Huffman codes. (5) Computing optimal discrete quantization.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Aggarwal, M. Klawe, S. Moran, P. Shor, and R. Wilber, Geometric Applications of a Matrix-Searching Algorithm,Algorithmica 2 (1987), 195–208.MATHMathSciNetCrossRefGoogle Scholar
  2. 2.
    A. Aggarwal and J. Park, Notes on Searching in Multidimensional Monotone Arrays,Proc. 29th IEEE Symp. on Foundations on Computer Science, 1988, pp. 497–512.Google Scholar
  3. 3.
    A. Aggarwal and T. Tokuyama, Consecutive Interval Query and Dynamic Programming on Intervals,Proc. 4th Internat. Symp. on Algorithms and Computing, 1993, pp. 466–475. Lecture Notes in Computer Science, Vol. 762. Springer-Verlag, Berlin.Google Scholar
  4. 4.
    T. Asano, Dynamic Programming on Intervals,Proc. 2nd Internat. Symp. on Algorithms, 1991, pp. 199–207. Lecture Notes in Computer Science, Vol. 557. Springer-Verlag, Berlin.Google Scholar
  5. 5.
    W. Bein, L. Larmore, and J. Park, Thed-Edge Shortest-Path Problem for a Monge Graph, Preprint, 1992.Google Scholar
  6. 6.
    J. Boyce, D. Dobkin, R. Drysdale, and L. Guibas, Finding Extremal Polygons,SIAM J. Comput. 14 (1985), 134–147.MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    K. Chan and T. Lam, Finding Least-Weight Subsequences with Fewer Processors,Proc. SIGAL Internat. Symp. on Algorithms, 1990, pp. 318–327. Lecture Notes in Computer Science, Vol. 450. Springer-Verlag, Berlin.Google Scholar
  8. 8.
    B. Chazelle, H. Edelsbrunner, L. Guibas, and M. Sharir, Diameter, Width, Closest Line Pair, and Parametric Searching,Proc. 8th ACM Symp. on Computational Geometry, 1992, pp. 120–129.Google Scholar
  9. 9.
    R. Cole, Slowing Down Sorting Networks to Obtain Faster Sorting Algorithms,J. Assoc. Comput. Mach. 34 (1987), 200–208.MathSciNetCrossRefGoogle Scholar
  10. 10.
    G. Frederickson, Optimal Algorithms for Tree Partitioning,Proc. 2nd ACM-SIAM Symp. on Discrete Algorithms, 1991, pp. 168–177.Google Scholar
  11. 11.
    M. Klawe, A Simple Linear-Time Algorithm for Concave One-Dimensional Dynamic Programming, Technical Report 89-16, University of British Columbia, Vancouver, 1989.Google Scholar
  12. 12.
    M. Klawe and D. Kleitman, An Almost Linear-Time Algorithm for Generalized Matrix Searching, Technical Report RJ6275, IBM Almaden Research Center, 1988.Google Scholar
  13. 13.
    C. P. Kruskal, Searching, Merging and Sorting in Parallel Computation,IEEE Trans. Comput. 32 (1983), 942–946.MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    L. Larmore and D. Hirschberg, Length-Limited Coding,Proc. 1st ACM-SIAM Symp. on Discrete Algorithms, 1990, pp. 310–318.Google Scholar
  15. 15.
    L. Larmore and T. Przytycka, Parallel Construction of Trees with Optimal Weighted Path Length,Proc. 3rd ACM Symp. on Parallel Algorithms and Architectures, 1991, pp. 71–80.Google Scholar
  16. 16.
    L. Larmore and B. Schieber, On-Line Dynamic Programming with Applications to the Prediction of RNA Secondary Structure,J. Algorithms 12 (1991), 490–515.MATHMathSciNetCrossRefGoogle Scholar
  17. 17.
    N. Megiddo, Applying Parallel Computation Algorithms in the Design of Serial Algorithms,J. Assoc. Comput. Mach. 30 (1983), 852–865.MATHMathSciNetCrossRefGoogle Scholar
  18. 18.
    R. Wilber, The Concave Least Weight Subsequence Problem Revisited,J. Algorithms 9 (1988), 418–425.MATHMathSciNetCrossRefGoogle Scholar
  19. 19.
    X. Wu, Optimal Quantization by Matrix Searching,J. Algorithms 12 (1991), 663–673.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1994

Authors and Affiliations

  • A. Aggarwal
    • 1
  • B. Schieber
    • 1
  • T. Tokuyama
    • 1
    • 2
  1. 1.Research Division, IBMT. J. Watson Research CenterYorktown HeightsUSA
  2. 2.Research DivisionIBM, Tokyo Research LaboratoryYamato, KanagawaJapan

Personalised recommendations