Semigroup Forum

, Volume 52, Issue 1, pp 93–100

Wreath products of algebras: Generalizing the Krohn-Rhodes theorem to arbitrary algebras

  • Joel VanderWerf
Research Announcement

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bergman, G. M.,Embedding arbitrary algebras in groups Algebra Universalis25 (1988), 107–120.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    Burris, S., and H. P. Sankappanavar, “A Course in Universal Algebra,” Graduate Texts in Mathematics v. 78, Springer, New York, 1981.MATHGoogle Scholar
  3. [3]
    Hobby, D., and R. McKenzie, “The Structure of Finite Algebras,” Contemporary Mathematics, v. 76, American Mathematical Society, Providence, RI, 1988.Google Scholar
  4. [4]
    Krohn, K., and J. Rhodes,Algebraic theory of machines. I. Prime decomposition theorem for finite semigroups and machines, Trans. Amer. Math. Soc.116 (1965), 450–464.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Maurer, W. D., and J. Rhodes,A property of simple non-abelian groups, Proc. Amer. Math. Soc.16 (1965), 552–554.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    McKenzie, R., G. McNulty, and W. Taylor, “Algebras, Lattices, Varieties,” Wadsworth, Monterey, CA, 1987.MATHGoogle Scholar
  7. [7]
    Rhodes, J., and B. Tilson,The kernel of monoid morphisms, J. Pure App. Algebra62 (1989), 227–268.MATHCrossRefMathSciNetGoogle Scholar
  8. [8]
    Rhodes, J., and P. Weil,Decomposition Techniques for finite semigroups using categories, I, J. Pure App. Algebra62 (1989), 269–284.MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    Rhodes, J., and P. Weil,Decomposition Techniques for finite semigroups using categories, II, J. Pure App. Algebra62 (1989), 285–312.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    Tilson, B.,Categories as algebra: an essential ingredient in the theory of monoids, J. Pure App. Algebra48 (1987), 83–198.MATHCrossRefMathSciNetGoogle Scholar
  11. [11]
    VanderWerf, J., “Wreath Decompositions of Algebras,” Dissertation, University of California, Berkeley, 1994.Google Scholar

Copyright information

© Springer-Veralg New York Inc. 1996

Authors and Affiliations

  • Joel VanderWerf
    • 1
  1. 1.Department of MathematicsUniversity of CaliforniaBerkeley

Personalised recommendations