Semigroup Forum

, Volume 52, Issue 1, pp 83–91 | Cite as

The finite basis problem in the pseudovariety joins of aperiodic semigroups with groups

  • P. G. Trotter
  • M. V. Volkov
Research Article


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Almeida, J.,Minimal non-permutative pseudovarieties of semigroups I, Pacific J. Math.121 (1986) 257–270.MATHMathSciNetGoogle Scholar
  2. [2]
    Almeida, Jorge, “Finite Semigroups and Universal Algebra”, World Scientific, Singapore, 1994.MATHGoogle Scholar
  3. [3]
    Ash, C.L.,Inevitable graphs: a proof of the type IIconjecture and some related decision procedures, Int. J. Algebra and Computation1 (1991) 127–146.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Azevedo, A. de,The join of the pseudovariety J with permutative pseudovarieties, in “Lattices, Semigroups, and Universal Algebra,” eds. J. Almeida, G. Bordalo, and Ph. Dwinger, Plenum Press, New York, 1–11.Google Scholar
  5. [5]
    Reiterman, J.,The Birkhoff theorem for finite algebras, Algebra Universalis14 (1982) 1–10.MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Schützenberger, M. P.,On finite monoids having only trivial subgroups, Inf. Control8 (1965) 190–194.MATHCrossRefGoogle Scholar
  7. [7]
    Simon, I.,Piecewise testable events, in Proc. 2nd GI Conf., Lect. Notes in Comput. Sci.33 (1975), Springer-Verlag, 214–222.Google Scholar
  8. [8]
    Volkov, M.V.,On finite basedness of semigroup varieties, Math. Notes45 (1989) 187–194].MATHGoogle Scholar
  9. [9]
    Volkov, M.V.,On a class of semigroup pseudovarieties without finite pseudoidentity basis, Int. J. Algebra and Computation4 (1994).Google Scholar
  10. [10]
    Zeitoun, M., “Opérations Implicites et Variétés de Semigroupes Finis”, Université Paris VII, Thèse de Doctorat, 1993.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1996

Authors and Affiliations

  • P. G. Trotter
    • 1
  • M. V. Volkov
    • 2
  1. 1.Department of MathematicsUniversity of TasmaniaHobartAustralia
  2. 2.Dept. Mathematics & MechanicsUral State UniversityEkatherinburgRussia

Personalised recommendations