Discrete & Computational Geometry

, Volume 13, Issue 3–4, pp 573–583

Polytopes that fill ℝn and scissors congruenceand scissors congruence

  • J. C. Lagarias
  • D. Moews
Article

Abstract

Suppose thatP is a (not necessarily convex) polytope in ℝn that can fill ℝn with congruent copies of itself. Then, except for its volume, all its classical Dehn invariants for Euclidean scissors congruence must be zero. In particular, in dimensions up to 4, any suchP is Euclidean scissors congruent to ann-cube. An analogous result holds in all dimensions for translation scissors congruence.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. D. Alexandrov, On completion of a space by polyhedra,Vestnik Leningrad Univ. Ser. Mat. Fiz. Him. 9 (1954), 33–43 (in Russian).MathSciNetGoogle Scholar
  2. 2.
    A. Bezdek and W. Kuperberg, Examples of space-tiling-polyhedra related to Hilbert's problem 18, question 2, in:Topics in Combinatorics and Graph Theory (R. Bodendick and R. Henn, eds.) Physica-Verlag, Heidelberg, 1990, pp. 87–92.CrossRefGoogle Scholar
  3. 3.
    V. G. Boltianskii,Hilbert's Third Problem, Wiley, New York, 1978.Google Scholar
  4. 4.
    L. Danzer, Three-dimensional analogs of the Planar penrose tilings and quasicrystals,Discrete Math. 76 (1989), 1–7.MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    L. Danzer, Eine Schar von 1—Steinen, die den\(\mathbb{E}^3 \) seitentreu pflastern, aber weder periodisch, noch quasiperiodisch, Preprint, 1993.Google Scholar
  6. 6.
    M. Dehn, Ueber raumgleiche Polyeder,Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl., 1900, pp. 345–354.Google Scholar
  7. 7.
    M. Dehn, Ueber den Rauminhalt,Math. Ann. 55 (1902), 465–478.MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    J. L. Dupont, Algebra of polytopes and homology of flag complexes,Osaka J. Math. 19 (1982), 599–641.MathSciNetMATHGoogle Scholar
  9. 9.
    M. Goldberg, Tetrahedra equivalent to cubes by dissection,Elem. Math. 13 (1958), 107–109.MathSciNetMATHGoogle Scholar
  10. 10.
    M. Goldberg, Two more tetrahedra equivalent to cubes by dissection,Elem. Math. 24 (1969), 130–132, Correction:25 (1970), 48.MATHGoogle Scholar
  11. 11.
    M. Goldberg, Three infinite families of tetrahedral space-fillers,J. Combin. Theory Ser. A 16 (1974), 348–354.CrossRefMathSciNetMATHGoogle Scholar
  12. 12.
    H. Hadwiger, Ergänzungsgleichheitk-dimensionaler Polyeder,Math. Z. 55 (1952), 292–298.MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    H. Hadwiger,Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Springer-Verlag, Berlin, 1957.CrossRefMATHGoogle Scholar
  14. 14.
    H. Hadwiger, Translative Zerlegungsgleichheit der Polyeder des gewöhnlichen Raumes,J. Reine Angew. Math. 233 (1968), 200–212.MathSciNetMATHGoogle Scholar
  15. 15.
    D. Hilbert,Grundlagen der Geometrie, Teubner, Leipzig, 1899. (10th edition 1968.)MATHGoogle Scholar
  16. 16.
    D. Hilbert, Mathematische Probleme,Göttinger Nachrichten, 1900, pp. 253–297. (Translation:Bull. Amer. Math. Soc. 8 (1902), 437–479. Reprinted in: Proceedings of Symposia in Pure Mathematics, Vol. 28, American Mathematical Society, Providence, RI, 1976, pp. 1–34).Google Scholar
  17. 17.
    M. J. M. Hill, Determination of the volumes of certain species of tetrahedra without employment of the method of limits,Proc. London Math. Soc. 27 (1896), 39–53.MathSciNetMATHGoogle Scholar
  18. 18.
    M. Jaric (ed.),Aperiodicity and Order, Vol. 2, Academic Press, New York, 1989.MATHGoogle Scholar
  19. 19.
    B. Jessen, The algebra of polyhedra and the Dehn-Sydler theorem,Math. Scand. 22 (1968), 241–256.MathSciNetMATHGoogle Scholar
  20. 20.
    B. Jessen, Zur Algebra der Polytope,Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl., 1972, pp. 47–53.Google Scholar
  21. 21.
    B. Jessen and A. Thorup, The algebra of polytopes in affine spaces,Math. Scand. 43 (1978), 211–240.MathSciNetMATHGoogle Scholar
  22. 22.
    A. Katz, Theory of matching rules for the 3-dimensional Penrose tilings,Comm. Math. Phys. 118 (1988), 263–288.MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    R. B. Kershner, On paving the plane,Amer. Math. Monthly 75 (1968), 839–844.MathSciNetCrossRefMATHGoogle Scholar
  24. 24.
    P. Kramer, Non-periodic central space filling with icosahedral symmetry using copies of seven elementary cells,Acta. Cryst. Sect. A,38 (1982), 257–264.MathSciNetCrossRefGoogle Scholar
  25. 25.
    W. Kuperberg, Knotted lattice-like space fillers, Preprint, 1993.Google Scholar
  26. 26.
    P. McMullen, Convex bodies which tile space by translation,Mathematika 27 (1980), 113–121. (Acknowledgment of priority,Mathematika 28 (1981) 192.)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    J. Milnor, Hilbert's problem 18: on crystallographic groups, fundamental domains and on sphere packing, in:Mathematical Developments Arising from Hilbert Problems, Proceedings of Symposia on Pure Mathematics, Vol. 28, American Mathematical Society, Providence, RI, 1976, pp. 491–506.CrossRefGoogle Scholar
  28. 28.
    K. Reinhardt, Zur Zerlegung der euklidische Räume in kongruente Polytope,Sitzungsb. Akad. Wiss. Berlin, 1928, pp. 150–155.Google Scholar
  29. 29.
    C.-H. Sah,Hilbert's Third Problem: Scissors Congruence, Pitman, San Francisco, 1979.MATHGoogle Scholar
  30. 30.
    P. Schmitt, An aperiodic prototile in space, Unpublished notes, University of Vienna, 1988.Google Scholar
  31. 31.
    M. Senechal and J. Taylor, Quasicrystals: the view from Les Houches,Math. Intelligencer 12 (1990), 54–64.MathSciNetCrossRefMATHGoogle Scholar
  32. 32.
    D. M. Y. Sommerville, Space-filling tetrahedra in Euclidean space,Proc. Edinburgh Math. Soc. 41 (1923), 49–57.Google Scholar
  33. 33.
    D. M. Y. Sommerville, Division of space by congruent triangles and tetrahedra,Proc. Roy Soc. Edinburgh 43 (1923), 85–116.MATHGoogle Scholar
  34. 34.
    S. K. Stein, A symmetric star body that tiles but not as a lattice,Proc. Amer. Math. Soc. 36 (1972), 543–548.MathSciNetCrossRefMATHGoogle Scholar
  35. 35.
    J.-P. Sydler, Sur la décomposition des polyèdres,Comment. Math. Helv. 16 (1943/44), 266–273.MathSciNetCrossRefMATHGoogle Scholar
  36. 36.
    J.-P. Sydler, Sur les tétraèdres équivalents à un cube,Elem. Math. 11 (1956), 78–81.MathSciNetMATHGoogle Scholar
  37. 37.
    J.-P. Sydler, Conditions nécessaires et suffisantes pour l'équivalence des polyèdres de l'espace euclidien à trois dimensions,Comm. Math. Helv. 40 (1965), 43–80.MathSciNetCrossRefMATHGoogle Scholar
  38. 38.
    S. Szabó, A star polyhedron that tiles but not as a fundamental region, in: Colloquia Mathematica Societatis Janos Bolyai, Vol. 48, North-Holland, Amsterdam, 1985, pp. 531–544.Google Scholar
  39. 39.
    B. A. Venkov, On a class of Euclidean polyhedra,Vestnik Leningrad Univ. Ser. Math. Fiz. Him. 9 (1954), 11–31 (in Russian).MathSciNetGoogle Scholar
  40. 40.
    V. B. Zylev, Equicomposability of equicomplementable polyhedra,Soviet Math. Dokl. 161 (1965), 453–455.MathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1995

Authors and Affiliations

  • J. C. Lagarias
    • 1
  • D. Moews
    • 2
  1. 1.AT & T Bell LaboratoriesMurray HillUSA
  2. 2.Department of MathematicsUniversity of CaliforniaBerkeleyUSA

Personalised recommendations