Discrete & Computational Geometry

, Volume 13, Issue 3–4, pp 441–443 | Cite as

Two combinatorial problems in the plane

  • P. Erdős
  • G. Purdy


The authors discuss two problems involvingn points in the plane and thet lines they form.


Positive Integer Positive Constant Computational Mathematic Acta Math Discrete Geometry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    J. Beck, On the lattice property of the plane and some problems of Dirac, Motzkin and Erdös in combinatorial geometry.Combinatorica 3 (1983), 281–297.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    P. D. T. A. Elliott, On the number of circles determined byn points.Acta Math. Acad. Sci. Hungar. 18 (1967), 181–188.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    P. Erdős and G. Purdy, Some combinatorial problems in the plane,J. Combin. Theory Ser. A 25 (1978), 205–210.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    E. Melchior, Uber Vielseite der projektiven Ebene,Deutsche Math. 5 (1940), 461–475.MathSciNetzbMATHGoogle Scholar
  5. 5.
    G. Purdy, Some combinatorial problems in the plane.Ann. N.Y. Acad. Sci. 440 (1985), 65–68.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    E. Szemerédi and W. T. Trotter, Extremal problems in discrete geometry,Combinatorica,3 (1983), 381–392.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1995

Authors and Affiliations

  • P. Erdős
    • 1
  • G. Purdy
    • 2
  1. 1.Mathematical InstituteHungarian Academy of SciencesBudapestHungary
  2. 2.Department of Computer ScienceUniversity of CincinnatiCincinnatiUSA

Personalised recommendations