Discrete & Computational Geometry

, Volume 11, Issue 4, pp 359–391

Cube-tilings of ℝn and nonlinear codesand nonlinear codes

  • J. C. Lagarias
  • P. W. Shor
Article

Abstract

Families of nonlattice tilings of ℝn by unit cubes are constructed. These tilings are specializations of certain families of nonlinear codes overGF(2). These cube-tilings provide building blocks for the construction of cube-tilings such that no two cubes have a high-dimensional face in common. We construct cube-tilings of ℝn such that no two cubes have a common face of dimension exceeding\(n - \tfrac{1}{3}\sqrt n\).

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Corrádi and S. Szabó, A combinatorial approach for Keller's conjecture,Period. Math. Hungar,21 (1990), 91–100.CrossRefGoogle Scholar
  2. 2.
    G. Hajós, Über einfache und mehrfache Bedeckung desn-dimensionalen Raumes mit einem Würfelgitter,Math. Z. 47 (1942), 427–467.CrossRefGoogle Scholar
  3. 3.
    G. Hajós, Sur la factorisation des groupes abelians,Časopis Pěst. Mat. Fys. 74 (1950), 157–162.MATHGoogle Scholar
  4. 4.
    J. E. Hopcroft and J. D. Ullman,Introduction to Automata Theory, Languages and Computation, Addison-Wesley, Reading, MA, 1979.MATHGoogle Scholar
  5. 5.
    O. H. Keller (1930), Über die lückenlose Einfüllung des Raumes mit Würfeln,J. Reine Angew. Math. 163 (1930), 231–248.MATHMathSciNetGoogle Scholar
  6. 6.
    J. C. Lagarias and P. W. Shor, Keller's cube-tiling conjecture is false in high dimensions,Bull. Amer. Math. Soc., N.S. 27 (1992), 279–283.MATHMathSciNetCrossRefGoogle Scholar
  7. 7.
    H. R. Lewis and C. H. Papadimitriou,Elements of the Theory of Computation, Prentice-Hall, Englewood Cliffs, NJ, 1981.MATHGoogle Scholar
  8. 8.
    J. MacWilliams and N. J. A. Sloane,The Theory of Error-Correcting Codes, North-Holland, Amsterdam, 1978.Google Scholar
  9. 9.
    H. Minkowski,Diophantische Approximationen, Teubner, Leipzig, 1907. Reprint: Physica-Verlag, Würzberg, 1961. (See Chapter 2, Section 4 and Chapter 3, Section 7. Minkowski's Conjecture appears on p. 28 and its geometric interpretation on p. 74).MATHCrossRefGoogle Scholar
  10. 10.
    O. Perron, Über lückenlose Ausfüllung desn-dimensionalen Raumes durch kongruente Würfel,Math. Z. 46 (1940), 1–26.MathSciNetCrossRefGoogle Scholar
  11. 11.
    S. K. Stein, Algebraic Tiling,Amer. Math. Monthly 81 (1974), 445–462.MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    S. Szabó, A reduction of Keller's conjecture,Period. Math. Hungar. 17 (1986), 265–277.MATHMathSciNetCrossRefGoogle Scholar
  13. 13.
    J. H. van Lint,Introduction to Coding Theory, Springer-Verlag, New York, 1982.MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1994

Authors and Affiliations

  • J. C. Lagarias
    • 1
  • P. W. Shor
    • 1
  1. 1.AT&T Bell LaboratoriesMurray HillUSA

Personalised recommendations