Discrete & Computational Geometry

, Volume 10, Issue 4, pp 377–409

An optimal convex hull algorithm in any fixed dimension

  • Bernard Chazelle
Article

Abstract

We present a deterministic algorithm for computing the convex hull ofn points inEd in optimalO(n logn+n⌞d/2⌟) time. Optimal solutions were previously known only in even dimension and in dimension 3. A by-product of our result is an algorithm for computing the Voronoi diagram ofn points ind-space in optimalO(n logn+n⌜d/2⌝) time.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agarwal, P. K. Partitioning arrangements of lines, I: An efficient deterministic algorithm,Discrete Comput. Geom. 5 (1990), 449–483.MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Brown, K. Q. Voronoi diagrams from convex hulls,Inform. Process. Lett. 9 (1979), 223–228.CrossRefMATHGoogle Scholar
  3. 3.
    Chazelle, B. Cutting hyperplanes for divide-and-conquer,Discrete Comput. Geom. 9 (1993), 145–158.MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Chazelle, B., Friedman, J. A deterministic view of random sampling and its use in geometry,Combinatorica 10 (1990), 229–249.MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Chazelle, B., Matoušek, J. Derandomizing an output-sensitive convex hull algorithm in three dimensions (submitted for publication).Google Scholar
  6. 6.
    Clarkson, K. L. A randomized algorithm for closest-point queries,SIAM J. Comput. 17 (1988), 830–847.MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Clarkson, K. L. Randomized geometric algorithms, inEuclidean Geometry and Computers, D. Z. Du and F. K. Hwang, eds., World Scientific, to appear.Google Scholar
  8. 8.
    Clarkson, K. L., Shor, P. W. Applications of random sampling in computational geometry, II,Discrete Comput. Geom. 4 (1989), 387–421.MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Edelsbrunner, H.Algorithms in Combinatorial Geometry, Springer-Verlag, Heidelberg, 1987.CrossRefMATHGoogle Scholar
  10. 10.
    Edelsbrunner, H., Seidel, R. Voronoi diagrams and arrangements,Discrete Comput. Geom. 1 (1986), 25–44.MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Graham, R. L. An efficient algorithm for determining the convex hull of a planar point set,Inform. Process. Lett. 1 (1972), 132–133.CrossRefMATHGoogle Scholar
  12. 12.
    Kirkpatrick, D. G., Seidel R. The ultimate planar convex hull algorithm?SIAM J. Comput. 15 (1986), 287–299.MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Matoušek, J. Approximations and optimal geometric divide-and-conquer,Proc. 23rd Annual ACM Symp. on Theory of Computing, 1991, pp. 505–511.Google Scholar
  14. 14.
    Matoušek, J. Efficient partition trees,Proc. 7th Annual ACM Symp. on Computational Geometry, 1991, pp. 1–9.Google Scholar
  15. 15.
    Matoušek, J. Cutting hyperplane arrangements,Discrete Comput. Geom. 6 (1991), 385–406.MathSciNetCrossRefMATHGoogle Scholar
  16. 16.
    Matoušek, J. Linear optimization queries,J. Algorithms, to appear.Google Scholar
  17. 17.
    Preparata, F. P., Hong, S. J. Convex hulls of finite sets of points in two and three dimensions,Comm. ACM 20 (1977), 87–93.MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Raghavan, P. Probabilistic construction of deterministic algorithms: approximating packing integer programs,J. Comput. System Sci. 37 (1988), 130–143.MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Seidel, R. A convex hull algorithm optimal for point sets in even dimensions, Technical Report 81-14, University of British Columbia, 1981.Google Scholar
  20. 20.
    Seidel, R. Constructing higher-dimensional convex hulls at logarithmic cost per face,Proc. 18th Annual ACM Symp. on Theory of Computing, 1986, pp. 404–413.Google Scholar
  21. 21.
    Seidel, R. Small-dimensional linear programming and convex hulls made easy,Discrete Comput. Geom. 6 (1991), 423–434.MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Spencer, J.Ten Lectures on the Probabilistic Method, CBMS-NSF, SIAM, Philadelphia, PA, 1987.MATHGoogle Scholar
  23. 23.
    Vapnik, V. N., Chervonenkis, A. Ya. On the uniform convergence of relative frequencies of events to their probabilities,Theory Probab. Appl. 16 (1971), 264–280.CrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1993

Authors and Affiliations

  • Bernard Chazelle
    • 1
  1. 1.Department of Computer SciencePrinceton UniversityPrincetonUSA

Personalised recommendations