Discrete & Computational Geometry

, Volume 10, Issue 4, pp 377–409 | Cite as

An optimal convex hull algorithm in any fixed dimension

  • Bernard Chazelle


We present a deterministic algorithm for computing the convex hull ofn points inE d in optimalO(n logn+n ⌞d/2⌟ ) time. Optimal solutions were previously known only in even dimension and in dimension 3. A by-product of our result is an algorithm for computing the Voronoi diagram ofn points ind-space in optimalO(n logn+n ⌜d/2⌝ ) time.


Voronoi Diagram Discrete Comput Geom Deterministic Algorithm Relative Interior Fixed Dimension 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Agarwal, P. K. Partitioning arrangements of lines, I: An efficient deterministic algorithm,Discrete Comput. Geom. 5 (1990), 449–483.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Brown, K. Q. Voronoi diagrams from convex hulls,Inform. Process. Lett. 9 (1979), 223–228.CrossRefzbMATHGoogle Scholar
  3. 3.
    Chazelle, B. Cutting hyperplanes for divide-and-conquer,Discrete Comput. Geom. 9 (1993), 145–158.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Chazelle, B., Friedman, J. A deterministic view of random sampling and its use in geometry,Combinatorica 10 (1990), 229–249.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chazelle, B., Matoušek, J. Derandomizing an output-sensitive convex hull algorithm in three dimensions (submitted for publication).Google Scholar
  6. 6.
    Clarkson, K. L. A randomized algorithm for closest-point queries,SIAM J. Comput. 17 (1988), 830–847.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Clarkson, K. L. Randomized geometric algorithms, inEuclidean Geometry and Computers, D. Z. Du and F. K. Hwang, eds., World Scientific, to appear.Google Scholar
  8. 8.
    Clarkson, K. L., Shor, P. W. Applications of random sampling in computational geometry, II,Discrete Comput. Geom. 4 (1989), 387–421.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Edelsbrunner, H.Algorithms in Combinatorial Geometry, Springer-Verlag, Heidelberg, 1987.CrossRefzbMATHGoogle Scholar
  10. 10.
    Edelsbrunner, H., Seidel, R. Voronoi diagrams and arrangements,Discrete Comput. Geom. 1 (1986), 25–44.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Graham, R. L. An efficient algorithm for determining the convex hull of a planar point set,Inform. Process. Lett. 1 (1972), 132–133.CrossRefzbMATHGoogle Scholar
  12. 12.
    Kirkpatrick, D. G., Seidel R. The ultimate planar convex hull algorithm?SIAM J. Comput. 15 (1986), 287–299.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Matoušek, J. Approximations and optimal geometric divide-and-conquer,Proc. 23rd Annual ACM Symp. on Theory of Computing, 1991, pp. 505–511.Google Scholar
  14. 14.
    Matoušek, J. Efficient partition trees,Proc. 7th Annual ACM Symp. on Computational Geometry, 1991, pp. 1–9.Google Scholar
  15. 15.
    Matoušek, J. Cutting hyperplane arrangements,Discrete Comput. Geom. 6 (1991), 385–406.MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Matoušek, J. Linear optimization queries,J. Algorithms, to appear.Google Scholar
  17. 17.
    Preparata, F. P., Hong, S. J. Convex hulls of finite sets of points in two and three dimensions,Comm. ACM 20 (1977), 87–93.MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Raghavan, P. Probabilistic construction of deterministic algorithms: approximating packing integer programs,J. Comput. System Sci. 37 (1988), 130–143.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Seidel, R. A convex hull algorithm optimal for point sets in even dimensions, Technical Report 81-14, University of British Columbia, 1981.Google Scholar
  20. 20.
    Seidel, R. Constructing higher-dimensional convex hulls at logarithmic cost per face,Proc. 18th Annual ACM Symp. on Theory of Computing, 1986, pp. 404–413.Google Scholar
  21. 21.
    Seidel, R. Small-dimensional linear programming and convex hulls made easy,Discrete Comput. Geom. 6 (1991), 423–434.MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Spencer, J.Ten Lectures on the Probabilistic Method, CBMS-NSF, SIAM, Philadelphia, PA, 1987.zbMATHGoogle Scholar
  23. 23.
    Vapnik, V. N., Chervonenkis, A. Ya. On the uniform convergence of relative frequencies of events to their probabilities,Theory Probab. Appl. 16 (1971), 264–280.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1993

Authors and Affiliations

  • Bernard Chazelle
    • 1
  1. 1.Department of Computer SciencePrinceton UniversityPrincetonUSA

Personalised recommendations