Discrete & Computational Geometry

, Volume 10, Issue 1, pp 67–78 | Cite as

A note on small linear-ordering polytopes

  • Gerhard Reinelt


In this paper we discuss the polyhedral structure of polytopes associated with the linear-ordering problem. We give explicit lists of facets of small linear-ordering polytopes for complete digraphs on up to seven nodes. For the latter we give a description that we believe to be complete.


Convex Hull Discrete Comput Geom Incidence Vector Linear Description Polyhedral Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. V. J. Bowman (1972), Permutation polyhedra,SIAM J. Appl. Math 22, 580–589.zbMATHMathSciNetCrossRefGoogle Scholar
  2. J. S. de Cani (1969), Maximum likelihood paired comparison ranking by linear programming,Biometrika 56, 537–545.zbMATHMathSciNetCrossRefGoogle Scholar
  3. T. Christof (1991), Ein Verfahren zur Transformation zwischen Polyederdarstellungen, Diplomarbeit, Universität Augsburg.Google Scholar
  4. T. Christof, M. Jünger, and G. Reinelt (1991), A Complete Description of the Traveling Salesman Polytope on 8 Nodes,Oper. Res. Lett. 10, 497–500.zbMATHMathSciNetCrossRefGoogle Scholar
  5. T. Dridi (1980), Sur les distribution binaires associees a des distributions ordinales,Math. Sci. Humaines 69, 15–31.zbMATHMathSciNetGoogle Scholar
  6. P. C. Fishburn (1990), Binary probabilities induced by rankings,SIAM J. Discrete Math. 3, 478–488.zbMATHMathSciNetCrossRefGoogle Scholar
  7. P. C. Fishburn (1991), Induced Binary Probabilities and the Linear Ordering Polytope: A Status Report, AT & T Bell Laboratories.Google Scholar
  8. M. Grötschel, M. Jünger, and G. Reinelt (1984), A cutting plane algorithm for the linear ordering problem,Oper. Res. 32, 1195–1220.zbMATHMathSciNetCrossRefGoogle Scholar
  9. M. Grötschel, M. Jünger, and G. Reinelt (1985), Facets of the linear ordering polytope,Math. Programming 33, 43–60.zbMATHMathSciNetCrossRefGoogle Scholar
  10. D. Hausmann (1980),Adjacency on Polytopes in Combinatorial Optimization, Hain, Meisenheim.zbMATHGoogle Scholar
  11. J. Leung and J. Lee (1990), Reinforcing Old Fences Gives New Facets, Report Yale University.Google Scholar
  12. G. Reinelt (1985),The Linear Ordering Problem: Algorithms and Applications, Research and Exposition in Mathematics, Vol. 8, Heldermann-Verlag, Berlin.zbMATHGoogle Scholar
  13. R. Suck (1991), Geometric and Combinatorial Properties of the Polytope of Binary Choice Probabilities, Report, Universität Osnabrück.Google Scholar
  14. S. N. Tschernikov (1971),Lineare Ungleichungen, Deutscher Verlag der Wissenschaften, Berlin.Google Scholar
  15. H. P. Young (1978), On permutations and permutation polytopes,Math. Programming Stud. 8, 128–140.zbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1993

Authors and Affiliations

  • Gerhard Reinelt
    • 1
  1. 1.Institut für Angewandte MathematikUniversität HeidelbergHeidelbergFederal Republic of Germany

Personalised recommendations