Landscape Ecology

, Volume 7, Issue 1, pp 63–75 | Cite as

Animal movements and population dynamics in heterogeneous landscapes

  • A. R. Johnson
  • J. A. Wiens
  • B. T. Milne
  • T. O. Crist
Article

Abstract

Organisms respond to environmental heterogeneity at different scales and in different ways. These differences are consequences of how the movement characteristics of animals—their movement rates, directionality, turning frequencies, and turning angles—interact with patch and boundary features in landscape mosaics. The interactions of movement patterns with landscape features in turn produce spatial patterns in individual space-use, population dynamics and dispersion, gene flow, and the redistribution of nutrients and other materials. We describe several theoretical approaches for modeling the diffusion, foraging behavior, and population dynamics of animals in heterogeneous landscapes, including: (1) scaling relationships derived from percolation theory and fractal geometry, (2) extensions of traditional patch-based metapopulation models, and (3) individual-based, spatially explicit models governed by local rules. We conclude by emphasizing the need to couple theoretical models with empirical studies and the usefulness of ‘microlandscape’ investigations.

Keywords

Diffusion fractal geometry landscapes microlandscapes metapopulations scale 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature cited

  1. Ackley, D.H. and Littman, M.S. 1992. Interactions between learning and evolution.In Artificial Life II. pp. 487–509. Edited by C.G. Langton, C. Taylor, J.D. Farmer and S. Rasmussen. Addison-Wesley, Redwood City, CA.Google Scholar
  2. Alexander, S. and Orbach, R. 1982. Density of states on fractals: ‘fractons’. J. Physique Lett. 43: L625-L631.Google Scholar
  3. Andow, D.A., Kareiva, P.M., Levin, S.A. and Okubo, A. 1990. Spread of invading organisms. Landscape Ecol. 4: 177–188.CrossRefGoogle Scholar
  4. Angles d’Auriac, J.C., Benoit, A. and Rammal, R. 1983. Random walk on fractals: numerical studies in two dimensions. J. Phys. A—Math. Gen. 16: 4039–4051.CrossRefGoogle Scholar
  5. Berg, H.C. 1983. Random walks in biology. Princeton University Press, Princeton, NJ.Google Scholar
  6. Bovet, P. and Benhamou, S. 1988. Spatial analysis of animal movements using a correlated random walk model. J. Theor. Biol. 131: 419–433.CrossRefGoogle Scholar
  7. Buechner, M.E. 1987. A geometric model of vertebrate dispersal: tests and implications. Ecology 68: 310–318.CrossRefGoogle Scholar
  8. Burrough, P.A. 1986. Principles of geographical information systems for land resources assessment. Clarendon Press, Oxford.Google Scholar
  9. Cairns, J., Jr. (ed.) 1985. Multispecies toxicity testing. Pergamon Press, New York.Google Scholar
  10. Collins, R.J. and Jefferson, D.R. 1992. AntFarm: towards simulated evolution.In Artificial Life II. pp. 579–601. Edited by C.G. Langton, C. Taylor, J.D. Farmer and S. Rasmussen. Addison-Wesley, Redwood City, CA.Google Scholar
  11. Conrad, M. and Pattee, H.H. 1970. Evolution experiments with an artificial ecosystem. J. Theor. Biol. 28: 393–409.PubMedCrossRefGoogle Scholar
  12. Conrad, M. and Strizich, M. 1985. EVOLVE II: a computer model of an evolving ecosystem. BioSystems 17: 245–258.PubMedCrossRefGoogle Scholar
  13. Dewdney, A.K. 1984. Computer Recreations: Sharks and fish wage in ecological war on the toroidal planet Wa-tor. Sci. Amer. 251(6): 14–22.Google Scholar
  14. Emlen, J.M. 1966. The role of time and energy in food preference. Amer. Nat. 100: 611–617.CrossRefGoogle Scholar
  15. Farhig, L. and Paloheimo, L. 1988. Effects of spatial arrangement of habitat patches on local population size. Ecology 69: 468–475.CrossRefGoogle Scholar
  16. Forman, R.T.T. and Godron, M. 1986. Landscape ecology. Wiley, New York.Google Scholar
  17. Forney, K.A. and Gilpin, M.E. 1989. Spatial structure and population extinction: a study withDrosophila flies. Conservation Biol. 3: 45–51.CrossRefGoogle Scholar
  18. Fretwell, S.D. and Lucas, H.L. 1969. On territorial behavior and other factors influencing habitat distribution in birds. I. Theoretical development. Acta Biotheoretica 19: 16–36.CrossRefGoogle Scholar
  19. Gardner, R.H., Milne, B.T., Turner, M.G. and O’Neill, R.V. 1987. Neutral models for the analysis of broad-scale landscape pattern. Landscape Ecol. 1: 19–28.CrossRefGoogle Scholar
  20. Gefen, Y., Aharony, A. and Alexander, S. 1983. Anomalous diffusion on percolation clusters. Phys. Rev. Lett. 50: 77–80.CrossRefGoogle Scholar
  21. Giddings, J.M. 1983. Microcosms for assessment of chemical effects on the properties of aquatic ecosystems.In Hazard Assessment of Chemicals, Volume 2. pp. 45–94. Academic Press, New York.Google Scholar
  22. Giddings, J.M. 1986. A microcosm procedure for determining safe levels of chemical exposure in shallow-water communities.In Community Toxicity Testing. pp. 121–134. Edited by J. Cairns, Jr. ASTM STP 290. American Society for Testing and Materials, Philadelphia.Google Scholar
  23. Giesy, J.P., Jr. (ed.) 1980. Microcosms in ecological research. DOE Symposium Series 52. CONF-781101. U.S. Department of Energy. Washington, DC.Google Scholar
  24. Hassell, M.P. and May, R.M. 1973. Stability in insect hostparasite models. J. Anim. Ecol. 42: 693–726.CrossRefGoogle Scholar
  25. Hastings, A. 1977. Spatial heterogeneity and the stability of predator-prey systems. Theor. Pop. Biol. 12: 37–48.CrossRefGoogle Scholar
  26. Havlin, S. and Ben-Avraham, D. 1987. Diffusion and fracton dimensionality on fractals and on percolation clusters. J. Phys. A—Math. Gen. 16: L483-L487.CrossRefGoogle Scholar
  27. Havlin, S. and Ben-Avraham, D. 1987. Diffusion in disordered media. Adv. Phys. 36: 695–798.CrossRefGoogle Scholar
  28. Heath, R.T. 1980. Are microcosms useful for ecosystem analysis?In Microcosms in Ecological Research. pp. 333–347. Edited by J.P. Giesy, Jr. DOE Symposium Series, 52. CONF-781101. U.S. Department of Energy. Washington, DC.Google Scholar
  29. Hill, J., IV and Wiegert, R.G. 1980. Microcosms in ecological modelling.In Microcosms in Ecological Research. pp. 138–163. Edited by J.P. Giesy, Jr. DOE Symposium Series 52. CONF-781101. U.S. Department of Energy. Washington, DC.Google Scholar
  30. Hogeweg, P. and Hesper, B. 1981. Two predators and a prey in a patchy environment: an application of MICMAC modeling. J. Theor. Biol. 93: 411–432.CrossRefGoogle Scholar
  31. Hogeweg, P. 1988. MIRROR beyond MIRROR, puddles of LIFE.In Artificial Life. Santa Fe Institute Studies in the Sciences of Complexity, Volume VI. pp. 297–316. Edited by C. Langton. Addison-Wesley. Redwood City, CA.Google Scholar
  32. Huffaker, C.B. 1958. Experimental studies on predation: dispersion factors and predator-prey oscillations. Hilgardia 27: 343–383.Google Scholar
  33. Ims, R.A. and Stenseth, N.C. 1989. Divided the fruitflies fall. Nature 342: 21–22.PubMedCrossRefGoogle Scholar
  34. Jefferson, D.R., Collins, R., Cooper, C., Dyer, M., Flowers, M., Korf, R., Taylor, C. and Wang, A. 1992. Evolution as a theme in artificial life: the Genesys/Tracker system.In Artificial Life II. pp. 549–578. Edited by C.G. Langton, C. Taylor, J.D. Farmer and S. Rasmussen. Addison-Wesley, Redwood City, CA.Google Scholar
  35. Johnson, A.R., Milne, B.T. and Wiens, J.A. (in review). Diffusion in fractal landscapes: squared displacements and first-passage times. Submitted to Ecology.Google Scholar
  36. Karieva, P. 1983. Local movement in herbivorous insects: applying a passive diffusion model to mark-recapture field experiments. Oecologia 57: 322–327.CrossRefGoogle Scholar
  37. Karieva, P. and Shigesada, N. 1983. Analyzing insect movement as a correlated random walk. Oecologia 56: 234–238.CrossRefGoogle Scholar
  38. King, D.L. 1980. Some cautions in applying results from aquatic microcosms.In Microcosms in Ecological Research. pp. 164–191. Edited by J.P. Giesy, Jr.. DOE Symposium Series 52. CONF-781101. U.S. Department of Energy. Washington, DC.Google Scholar
  39. Leffler, J.W. 1980. Microcosmology: theoretical applications of biological models.In Microcosms in Ecological Research. pp. 14–29. Edited by J.P. Giesy, Jr. DOE Symposium Series 52. CONF-781101. U.S. Department of Energy. Washington, DC.Google Scholar
  40. Levene, H. 1953. Genetic equilibrium when more than one ecological niche is available. Amer. Nat. 87: 331–333.CrossRefGoogle Scholar
  41. Levin, S.A. 1974. Dispersion and population interactions. Amer. Nat. 108: 207–228.CrossRefGoogle Scholar
  42. Levins, R. and MacArthur, R.H. 1966. The maintenance of genetic polymorphism in a spatially heterogeneous environment: variations on a theme by Howard Levene. Amer. Nat. 100: 585–589.CrossRefGoogle Scholar
  43. Lovejoy, T.E., Bierregaard, R.O., Rylands, A.B., Malcolm, J.R., Quintela, C.E., Harper, L.H., Brown, K.S. Jr., Powell, G.V.N., Schubart, H.O.R. and Hays, M.B. 1986. Edge and other effects of isolation on Amazon forest fragments.In Conservation Biology: The Science of Scarcity and Diversity (M.E. Soulé, ed.), pp. 257–285. Sinaeur Associates. Sunderland, MA.Google Scholar
  44. Lubina, J.A. and Levin, S.A. 1988. The spread of a reinvading species: range expansion in the California sea otter. Amer. Nat. 131: 526–543.CrossRefGoogle Scholar
  45. MacArthur, R.H. and Pianka, E.R. 1966. On optimal use of a patchy environment. Amer. Nat. 100: 603–609.CrossRefGoogle Scholar
  46. Marsh, L.M. and Jones, R.E. 1988. The form and consequence of random walk movement models. J. Theor. Biol. 133: 113–131.CrossRefGoogle Scholar
  47. McCarthy, J.F. 1988. Random walks on invasion percolation clusters. J. Phys. A—Math. Gen. 21: 3379–3384.CrossRefGoogle Scholar
  48. McCullouch, C.E. and Cain, M.L. 1989. Analyzing discrete movement data as a correlated random walk. Ecology 70: 383–388.CrossRefGoogle Scholar
  49. Metcalf, R.L., Sangha, G.K. and Kapoor, P. 1971. Model ecosystem for the evaluation of pesticide biodegradability and ecological magnification. Environ. Sci. Technol. 5: 709–713.CrossRefGoogle Scholar
  50. Milne, B.T. 1991. Lessons from applying fractal models to landscape patterns.In Quantitative Methods in Landscape Ecology. pp. 199–235. Edited by M.G. Turner and R.H. Gardner. Springer-Verlag, Berlin.Google Scholar
  51. Milne, B.T., Johnston, K. and Forman, R.T.T. 1989. Scale-dependent proximity of wildlife habitat in a spatially-neutral Bayesian model. Landscape Ecol. 2: 101–110.CrossRefGoogle Scholar
  52. Milne, B.T., Turner, M.G., Wiens, J.A. and Johnson, A.R. (in press). Interactions between the fractal geometry of landscapes and allometric herbivory. Theor. Pop. Biol.Google Scholar
  53. Mitescu, C.D. and Rossenq, J. 1983. Diffusion on percolation clusters.In Percolation Structures and Processes. Annals of the Israel Physical Society. Volume 5. pp. 81–100. Edited by G. Deutscher, R. Zallen and J. Adler. Adam Higler, Bristol.Google Scholar
  54. Okubo, A. 1980. Diffusion and ecological problems: mathematical models. Springer-Verlag, Berlin.Google Scholar
  55. Opdam, P. 1991. Metapopulation theory and habitat fragmentation: a review of holarctic breeding bird studies. Landscape Ecol. 5: 93–106.CrossRefGoogle Scholar
  56. Orbach, R. 1986. Dynamics of fractal networks. Science 231: 814–819.CrossRefPubMedGoogle Scholar
  57. Oster, G. and Wilson, E.O. 1978. Caste and ecology in the social ants. Princeton University Press, Princeton, NJ.Google Scholar
  58. Pacala, S.W., Hassell, M.P. and May, R.M. 1990. Host-parasitoid associations in patchy environments. Nature 344: 150–153.PubMedCrossRefGoogle Scholar
  59. Pandey, R.B., Stauffer, D., Margolina, A. and Zabolitzky, J.G. 1984. Diffusion on random systems above, below, and at their percolation threshold in two and three dimension. J. Stat. Phys. 34: 427–450.CrossRefGoogle Scholar
  60. Peters, R.H. 1983. The ecological implication of body size. Cambridge University Press, New York.Google Scholar
  61. Pickett, S. T. A. and White, P. S. 1985. The ecology of natural disturbance and patch dynamics. Academic Press, New York.Google Scholar
  62. Pimentel, D., Nagel, W.P. and Madden, J.L. 1963. Space-time structure of the environment and the survival of parasite-host systems. Amer. Nat. 97: 141–167.CrossRefGoogle Scholar
  63. Pritchard, P.H. 1981. Model ecosystems.In Environmental Risk Analysis for Chemicals. pp. 257–353. Edited by R.A. Conway. Van Nostrand Reinhold, New York.Google Scholar
  64. Rammal, R. 1984. Random walk statistics on fractal structures. J. Stat. Phys. 36: 547–560.CrossRefGoogle Scholar
  65. Rammal, R. and Toulouse, G. 1983. Random walks on fractal structures and percolation clusters. J. Physique Lett. 44: L13-L22.Google Scholar
  66. Redner, S. 1983. Recent progress and current puzzles in percolation.In The Mathematics and Physics of Disordered Media: Percolation, Random Walk, Modeling, and Simulation. Lecture Notes in Mathematics, No. 1035. pp. 184–200. Edited by B.D. Hughes and B.W. Ninham. Springer-Verlag, Berlin.CrossRefGoogle Scholar
  67. Risser, P.G., Karr, J.R. and Forman, R.T.T. 1984. Landscape Ecology: Directions and Approaches. Illinois Natural History Survey Special Publication Number 2.Google Scholar
  68. Rizki, M.M. and Conrad, M. 1985. EVOLVE III: a discrete events model of an evolutionary ecosystem. BioSystems 18: 121–133.PubMedCrossRefGoogle Scholar
  69. Rizki, M.M. and Conrad, M. 1986. Computing the theory of evolution. Physica D 22: 83–99.CrossRefGoogle Scholar
  70. Sabelis, M.W. and Diekmann, O. 1988. Overall population stability despite local extinction: the stabilizing effect of prey dispersal from predator-invaded patches. Theor. Pop. Biol. 34: 169–176.CrossRefGoogle Scholar
  71. Seshardi, V. and West, B.J. 1982. Fractal dimensionality of Lévy processes. Proc. Nat. Acad. Sci. USA 79: 4501–4505.CrossRefGoogle Scholar
  72. Shirazi, M.A., Lighthart, B. and Gillett, J. 1984. A method for scaling biological response of soil microcosms. Ecol. Modell. 23: 203–226.CrossRefGoogle Scholar
  73. Shorrocks, B. and Swingland, I.R. (eds.) 1990. Living in a patchy environment. Oxford University Press, Oxford.Google Scholar
  74. Shugart, H. H. and West, D.C. 1981. Long-term dynamics of forest ecosystems. Amer. Sci. 69: 647–652.Google Scholar
  75. Stamps, J.A., Buechner, M. and Krishnan, V.V. 1987. The effects of habitat geometry on territorial defense costs: intruder pressure in bounded habitats. Amer. Zool. 27: 307–325.Google Scholar
  76. Stephens, D.W. and Krebs, J.R. 1986. Foraging theory. Princeton University Press, Princeton, NJ.Google Scholar
  77. Swihart, R.K., Slade, N.A. and Bergstrom, B.J. 1988. Relating body size to the rate of home range use in mammals. Ecology 69: 393–399.CrossRefGoogle Scholar
  78. Taub, F.B. 1969. A biological model of a freshwater community: a gnotobiotic ecosystem. Limnol. Oceanogr. 14: 136–142.CrossRefGoogle Scholar
  79. Taub, F.B. and Crow, M.E. 1980. Synthesizing aquatic microcosms.In Microcosms in Ecological Research. pp. 69–104. Edited by J.P. Giesy, Jr. DOE Symposium Series 52. CONF-781101. U.S. Department of Energy. Washington, DC.Google Scholar
  80. Taylor, A.D. 1990. Metapopulation, dispersal, and predatorprey dynamics: an overview. Ecology 71: 429–433.CrossRefGoogle Scholar
  81. Taylor, C.E., Jefferson, D.R., Turner, S.R. and Goldman, S.R. 1988. RAM: artificial life for the exploration of complex biological systems.In Artificial Life. Santa Fe Institute Studies in the Sciences of Complexity, Volume VI. pp. 275–295. Edited by C. Langton. Addison-Wesley, Redwood City, CA.Google Scholar
  82. Turner, M.G. 1989. Landscape ecology: the effects of pattern on process. Ann. Rev. Ecol. Syst. 20: 171–197.CrossRefGoogle Scholar
  83. Van den Ende, P. 1973. Predator-prey interactions in continuous culture. Science 181: 562–564.CrossRefPubMedGoogle Scholar
  84. Vandermeer, J.H. 1973. On the regional stability of locally unstable predator-prey relationships. J. Theor. Biol. 41: 161–170.PubMedCrossRefGoogle Scholar
  85. Van Voris, P., Tolle, D.A., Arthur, M.F. and Chesson, J. 1985. Terrestrial microcosms: applications, validation and costbenefit analysis.In Multispecies Toxicity Testing. pp. 117–142. Edited by J. Cairns, Jr. Pergamon Press, New York.Google Scholar
  86. Wasserman, P.D. 1989. Neural computing: theory and practice. Van Nostrand Reinhold, New York.Google Scholar
  87. Watt, A.S. 1947. Pattern and process in the plant community. J. Ecol. 35: 1–22.CrossRefGoogle Scholar
  88. Wiener, R.S. and Pinson, L.J. 1990. TheC ++ workbook. Addison-Wesley, Reading, MA.Google Scholar
  89. Wiens, J.A. (in press). Ecological flows across landscape boundaries: a conceptual overview.In Landscape Boundaries. Edited by F. di Castri and A.D. Hansen. Springer-Verlag, New York.Google Scholar
  90. Wiens J.A. 1990. On the use of ‘grain’ and ‘grain size’ in ecology. Functional Ecology 4: 720.Google Scholar
  91. Wiens, J.A. 1989. Spatial scaling in ecology. Functional Ecology 3: 385–397.CrossRefGoogle Scholar
  92. Wiens, J.A. and Milne, B.T. 1989. Scaling of ‘landscapes’ in landscape ecology, or landscape ecology from a beetle’s perspective. Landscape Ecol. 3: 87–96.CrossRefGoogle Scholar
  93. Ziegler, B.P. 1977. Persistence and patchiness of predator-prey systems induced by discrete event population exchange mechanisms. J. Theor. Biol. 67: 687–713.CrossRefGoogle Scholar

Copyright information

© SPB Academic Publishing bv 1992

Authors and Affiliations

  • A. R. Johnson
    • 1
  • J. A. Wiens
    • 2
  • B. T. Milne
    • 1
  • T. O. Crist
    • 2
  1. 1.Department of BiologyUniversity of New MexicoAlbuquerque
  2. 2.Department of BiologyColorado State UniversityFort Collins

Personalised recommendations