Landscape Ecology

, Volume 7, Issue 1, pp 55–61 | Cite as

A hierarchical neutral model for landscape analysis

  • R. V. O’Neill
  • R. H. Gardner
  • M. G. Turner
Article

Abstract

Empirical studies have revealed scaled structure on a variety of landscapes. Understanding processes that produce these structures requires neutral models with hierarchical structure. The present study presents a method for generating random maps possessing a variety of hierarchical structures. The properties of these scaled landscapes are analyzed and compared to patterns on totally random, unstructured landscapes. Hierar-chical structure permits percolation (i.e., continous habitat spanning the landscape) under a greater variety of conditions than found on totally random landscapes. Habitat clusters on structured maps tend to have smaller perimeters. The clusters tend to be less clumped on sparsely occupied landscapes and more clumped in densely occupied conditions. Hierarchical structure changes the expected spatial properties of the landscape, indicating a strong need for this new generation of neutral models.

Keywords

Hierarchy theory percolation theory curdling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, D.J. 1971. Spatial patterns in some Australian Dryland plant communities. pp. 271–286.In G.P. Patil and W.E. Waters (eds.) Statistical Ecology, Volume 1. Spatial Patterns and Statistical Distributions. Pennsylvania State University Press, University Park, PA.Google Scholar
  2. Barnsley, M.F., Ervin, V., Hardin, D. and Lancaster, I. 1986. Solution of an inverse problem for fractals and other sets. Proc. Natl. Acad. Sci. 83: 1975–1977.PubMedCrossRefGoogle Scholar
  3. Caswell, H. 1976. Community structure: a neutral model analysis. Ecol. Monogr. 46: 327–354.CrossRefGoogle Scholar
  4. Forman, R.T.T. and Godron, M. 1986. Landscape Ecology. John Wiley and Sons, NY.Google Scholar
  5. Gardner, R.H., Milne, B.T., Turner, M.G. and O’Neill, R.V. 1987. Neutral models for the analysis of broad-scale landscape pattern. Landscape Ecology 1: 19–28.CrossRefGoogle Scholar
  6. Gardner, R.H., O’Neill, R.V., Turner, M.G. and Dale, V.H. 1989. Quantifying scale-dependent effects of animal movement with simple percolation models. Landscape Ecology 3: 217–227.CrossRefGoogle Scholar
  7. Gefen, Y, Aharony, A. and Alexander, S. 1983. Anomalous diffusion on percolating clusters. Physical Review Letter 50: 77–80.CrossRefGoogle Scholar
  8. Greig-Smith, P. 1983. Quantitative Plant Ecology. University of California Press, Berkeley, CA.Google Scholar
  9. Krummel, J.R., Gardner, R.H., Sugihara, G. and O’Neill, R.V. 1987. Landscape patterns in a disturbed environment. Oikos 48: 321–324.CrossRefGoogle Scholar
  10. Lavorel, S., Gardner, R.H. and O’Neill, R.V.A. model for the analysis of patterns in structured landscapes (manuscript).Google Scholar
  11. Levin, S.A. and Buttel, L. 1987. Mesures of patchiness in ecological systems. Publication No. ERC-130, Ecosystem Research Center, Cornell University, Ithaca, NY.Google Scholar
  12. Mandelbrot, B. 1983. The Fractal Geometry of Nature. W.H. Freeman and Co., NY.Google Scholar
  13. O’Neill, R.V., Milne, B.T., Turner, M.G. and Gardner, R.H. 1988. Resource utilization scales and landscape pattern. Landscape Ecology 2: 63–69.CrossRefGoogle Scholar
  14. O’Neill, R.V., Johnson, A.R. and King, A.W. 1989. A hierar-chical framework for the analysis of scale. Landscape Ecology 3: 193–206.CrossRefGoogle Scholar
  15. O’Neill, R.V., Gardner, R.H., Milne, B.T., Turner, M.G. and Jackson, B. 1991a. Heterogeneity and spatial hierarchies. pp. 85–96.In J. Kolasa and Pickett, S.T.A. (eds.) Ecological Heterogeneity. Springer-Verlag, NY.Google Scholar
  16. O’Neill, R.V., Turner, S.J., Cullinen, V.I., Coffin, D.P., Cook, T., Conley, W., Brunt, J., Thomas, J.M., Conley, M.R. and Gosz, J. 1991b. Multiple landscape scales: An intersite comparison. Landscape Ecology 5: 137–144.CrossRefGoogle Scholar
  17. Orbach, R. 1986. Dynamics of fractal networks. Science 231: 814–819.CrossRefGoogle Scholar
  18. Stauffer, D. 1985. Introduction to Percolation Theory. Taylor and Francis, London.Google Scholar
  19. Turner, M.G. 1989. Landscape Ecology: The effect of pattern on process. Annu. Rev. Ecol. Syst. 20: 171–197.CrossRefGoogle Scholar
  20. Turner, M.G., Gardner, R.H., Dale, V.H. and O’Neill, R.V. 1989. Predicting the spread of disturbance across heterogeneous landscapes. Oikos 55: 121–129.CrossRefGoogle Scholar
  21. Urban, D.L., O’Neill, R.V. and Shugart, H.H. 1987. Landscape ecology. Bioscience 37: 119–127.CrossRefGoogle Scholar
  22. Watt, A.S. 1947. Pattern and process in the plant community. J. Ecol. 35: 1–22.CrossRefGoogle Scholar

Copyright information

© SPB Academic Publishing bv 1992

Authors and Affiliations

  • R. V. O’Neill
    • 1
  • R. H. Gardner
    • 1
  • M. G. Turner
    • 1
  1. 1.Environmental Sciences DivisonOak Ridge National LaboratoryOak Ridge

Personalised recommendations