Semigroup Forum

, Volume 51, Issue 1, pp 47–62 | Cite as

Reidemeister-Schreier type rewriting for semigroups

  • C. M. Campbell
  • E. F. Robertson
  • N. Ruškuc
  • R. M. Thomas
Research Article

Keywords

Finite Index Coset Representative Free Semigroup Interpretation Mapping Rees Matrix Semigroup 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Campbell, C.M., E.F. Robertson, N. Ruškuc and R.M. Thomas,Semigroup and group presentations, Bull. London Math. Soc., to appear.Google Scholar
  2. [2]
    Campbell, C.M.,Rewriting a semigroup presentation, Internat. J. Algebra Comput., to appear.Google Scholar
  3. [3]
    Campbell, C.M.,Semigroup presentations and minimal ideals, submitted.Google Scholar
  4. [4]
    Howie, J.M., “An Introduction to Semigroup Theory”, Academic Press, London, 1976.MATHGoogle Scholar
  5. [5]
    Howie, J.M., and N. Ruškuc,Constructions and presentatons for monoids, Comm. Algebra, to appear.Google Scholar
  6. [6]
    Jura, A.,Coset enumeration in a finitely presented semigroup, Canad. Math. Bull.21(1978), 37–46.MATHMathSciNetGoogle Scholar
  7. [7]
    —,Determining ideals of a given finite index in a finitely presented semigroup, Demonstratio Math.11(1978), 813–827.MATHMathSciNetGoogle Scholar
  8. [8]
    Lallement, G., “Semigroups and Combinatorial Applications”, John Wiley, New York, 1976.Google Scholar
  9. [9]
    Magnus, W., A. Karrass and D. Solitar, “Combinatorial Group Theory”, Dover, New York, 1976.MATHGoogle Scholar
  10. [10]
    Neumann, B.H.,Some remarks on semigroup presentations, Canad. J. Math.19(1967), 1018–1026.MathSciNetGoogle Scholar
  11. [11]
    Robertson, E.F., and Y. Ünlü,On semigroup presentations, Proc. Edinburgh Math. Soc.36(1993), 55–68.MATHMathSciNetCrossRefGoogle Scholar
  12. [12]
    Sims, C.C., “Computation with Finitely Presented Groups”, Cambridge University Press, Cambridge, 1994.MATHGoogle Scholar
  13. [13]
    Spehner, J.C.,Quelques constructions et algorithmes relatifs aux sous-monoïdes d'un monoïde libre, Semigroup Forum9(1975), 334–353.CrossRefMathSciNetGoogle Scholar
  14. [14]
    Todd, J.A., and H.S.M. Coxeter,A practical method for enumerating the cosets of a finite abstract group, Proc. Edinburgh Math. Soc.5(1936), 26–34.MATHGoogle Scholar
  15. [15]
    Walker, T.G., “Semigroup Enumeration-Computer Implementation and Applications”, Ph.D. Thesis, University of St Andrews, 1992.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1995

Authors and Affiliations

  • C. M. Campbell
    • 1
  • E. F. Robertson
    • 1
  • N. Ruškuc
    • 1
  • R. M. Thomas
    • 2
  1. 1.Mathematical InstituteUniversity of St AndrewsSt AndrewsScotland
  2. 2.Department of Mathematics and Computer ScienceUniversity of LeicesterLeicesterEngland

Personalised recommendations