Semigroup Forum

, Volume 50, Issue 1, pp 351–366

A complex Tauberian theorem and mean ergodic semigroups

  • Wolfgang Arendt
  • Charles J. K. Batty
Research Article


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Arendt, W. and C. J. K. Batty, Tauberian theorems and stability of one-parameter semigroups, Trans. Amer. Math. Soc.306 (1988), 837–852.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    Arendt, W. and J. Prüss, Vector-valued Tauberian theorems and asymptotic behavior of Volterra equations, SIAM J. Math.23 (1992), 412–448.MATHCrossRefGoogle Scholar
  3. [3]
    Batty, C. J. K.Tauberian theorems for the Laplace Stieltjes transform, Trans. Amer. Math. Soc.322 (1990), 783–804.MATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Batty, C. J. K. and Vũ Quôc Phóng,Stability of individual elements of one-parameter semigroups, Trans. Amer. Math. Soc.322 (1990), 805–818.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Ingham, A. E.On Wiener's method in Tauberian theorems, Proc. London Math. Soc. (2)38 (1933), 458–480.Google Scholar
  6. [6]
    Korevaar, J.On Newman's quick way to the prime number theorem, Math. Intelligencer4 (1982), 108–115.MATHMathSciNetCrossRefGoogle Scholar
  7. [7]
    Krengel, U.. Ergodic Theorems, de Gruyter, Berlin 1985.MATHGoogle Scholar
  8. [8]
    Nagel, R. One-parameter Semigroups of Positive Operators, Lecture Notes Math.1184, Springer-Verlag 1986.Google Scholar
  9. [9]
    Nagel, R.,Towards a “matrix theory” for unbounded operator matrices, Math. Z.201 (1989), 57–68.MATHCrossRefMathSciNetGoogle Scholar
  10. [10]
    Vũ Quôc Phóng,The operator equation AX−XB=C with unbounded operators A and B and related abstract Cauchy problems, Math. Z.208 (1991), 567–588.CrossRefMathSciNetGoogle Scholar
  11. [11]
    Widder, D. V., An Introduction to Transform Theory, Academic Press. New York 1971.Google Scholar

Copyright information

© Springer-Verlag New York Inc. 1995

Authors and Affiliations

  • Wolfgang Arendt
    • 1
    • 2
  • Charles J. K. Batty
    • 1
    • 2
  1. 1.Equipe de Mathématiques-URA CNRS 741Université de Franche-ComtéBesançon CedexFRANCE
  2. 2.St. John's CollegeOxfordEngland

Personalised recommendations