Advertisement

Semigroup Forum

, Volume 50, Issue 1, pp 327–350 | Cite as

Applications of epigroups to graded ring theory

  • A. V. Kelarev
Research Article

Keywords

Maximal Subgroup Left Ideal Regular Semigroup Homomorphic Image Artinian Ring 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Beattie, M., and E. Jespers,On perfect graded rings, Commun. Algebra,19 (1991), 2363–2371.zbMATHMathSciNetGoogle Scholar
  2. [2]
    Beidar, K. I., Examples of rings and radicals,Coll. Math. Soc. János Bolyai 38 (1982), 19–46.MathSciNetGoogle Scholar
  3. [3]
    Bergman, G. M.,On Jacobson radical of graded rings, preprint.Google Scholar
  4. [4]
    Braun, A.,The nilpotency of the radical in a finitely generated PI-ring, J. Algebra89 (1984), 375–396.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Camillo, V. P., and K. R. Fuller,On graded rings with finiteness conditions, Proc. Amer. Math. Soc.86 (1982), 1–5.zbMATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    Chanyshev, A. D.,On the nilpotency of graded associative algebras, Matem. Sbornik181 (1990)(11), 1573–1579.Google Scholar
  7. [7]
    Chick, H. L., and B. J. Gardner,The preservation of some ring properties by semilattice sums, Commun. Algebra15 (1987), 1017–1038.zbMATHMathSciNetGoogle Scholar
  8. [8]
    Clase, M. V.,Semigroup-graded rings, Dissertation, Memorial University of Newfoundland, 1993.Google Scholar
  9. [9]
    Clase, M. V., and E. Jespers,Perfectness of rings graded by finite semigroups, Bull. Math. Soc. Belg. Ser. A,45 (1993), 93–102.zbMATHMathSciNetGoogle Scholar
  10. [10]
    Clase, M. V., and E. Jespers,On the Jacobson radical of semigroup-graded rings, J. Algebra, to appear.Google Scholar
  11. [11]
    Clase, M. V., E. Jespers, A. V. Kelarev and J. Okniński,Artinian semigroup-graded rings, Bull. London Math. Soc., to appear.Google Scholar
  12. [12]
    Clase, M. V., E. Jespers and A. del Rio, Semigroup graded rings with finite supports, submitted.Google Scholar
  13. [13]
    Clifford, A. H., and G. B. Preston, “The Algebraic Theory of Semigroups”, Amer. Math. Soc., Providence, Vol. 1, 1961.zbMATHGoogle Scholar
  14. [14]
    Cohen, M, and S. Montgomery,Group-graded rings, smash products, and group actions, Trans. Amer. Math. Soc.282 (1984), 237–258.zbMATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    Cohen, M., and L. H. Rowen,Group graded rings, Commun. Algebra11 (1983), 1253–1270.zbMATHMathSciNetGoogle Scholar
  16. [16]
    Dąscąlescu, S., and A. del Rio,Graded T-rings with finite support, Commun. Algebra21 (1993), 3619–3636.zbMATHGoogle Scholar
  17. [17]
    Grzeszczuk, P.,On G-systems and G-graded rings, Proc. Amer. Math. Soc.95 (1985)(3), 348–352.zbMATHCrossRefMathSciNetGoogle Scholar
  18. [18]
    Higgins, P., “Techniques of Semigroup Theory”, Oxford University Press, 1992.Google Scholar
  19. [19]
    Howie, J. M., “An Introduction to Semigroup Theory”, London Math. Soc. Monographs, Academic Press, London, 1976.zbMATHGoogle Scholar
  20. [20]
    Jaegermann, M., and A. D. Sands,On normal radicals, N-radicals, and A-radicals, J. Algebra50 (1978), 337–349.zbMATHCrossRefMathSciNetGoogle Scholar
  21. [21]
    Janeski, J., and J. Weissglass,Regularity of semilattice sums of rings, Proc. Amer. Math. Soc.39 (1973), 479–482.zbMATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    Jensen, A., and S. Jöndrup,Smash products, group actions and group graded rings, Math. Scand.68 (1991), 161–170.zbMATHMathSciNetGoogle Scholar
  23. [23]
    Jensen, A., and S. Jöndrup,Classical quotient rings of group graded rings, Commun. Algebra20 (1992), 2923–2936.zbMATHGoogle Scholar
  24. [24]
    Jespers, E., and J. Okniński, Descending chain conditions and graded rings, submitted.Google Scholar
  25. [25]
    Karpilovsky, G., “The Jacobson Radical of Classical Rings”, Pitman Monographs, New York, 1991.zbMATHGoogle Scholar
  26. [26]
    Kelarev, A. V.,Prevarieties and bands of associative rings, Matem. Zapiski UrGU (Sverdlovsk) 1987, 47–53.Google Scholar
  27. [27]
    Kelarev, A. V.,On bands of quasiregular and strongly regular rings, Matem. Zapiski UrGU (Sverdlovsk) 1988, 89–95.Google Scholar
  28. [28]
    Kelarev, A. V.,On the radicalness of semigroup graded algebras, Matem. Issled. (Kishiniov)111 (1989), 82–96.MathSciNetGoogle Scholar
  29. [29]
    Kelarev, A. V.,On the structure of radicals in semigroup graded algebras, Matem. Issled. (Kishiniov)118 (1990), 58–65.zbMATHMathSciNetGoogle Scholar
  30. [30]
    Kelarev, A. V.,Radical classes and bands of associative algebras, Izv. Vyssh. Ucheb. Zav. Matem. 1990, N 7, 21–28.Google Scholar
  31. [31]
    Kelarev, A. V.,Hereditary radicals and bands of associative rings, J. Austral. Math. Soc. (Ser. A)51 (1991), 62–72.zbMATHMathSciNetGoogle Scholar
  32. [32]
    Kelarev, A. V.,Radicals of graded rings and applications to semigroup rings, Commun. Algebra20 (1992), 681–700.zbMATHMathSciNetGoogle Scholar
  33. [33]
    Kelarev, A. V.,A general approach to the structure of radicals in some ring constructions, “Theory of Radicals”, Szekszárd, 1991, Coll. Math. Soc. János Bolyai61 (1993), 131–144.Google Scholar
  34. [34]
    Kelarev, A. V.,On semigroup graded PI-algebras, Semigroup Forum47 (1993) 294–298.zbMATHCrossRefMathSciNetGoogle Scholar
  35. [35]
    Kelarev, A. V.,Nil properties for rings which are sums of their additive subgroups, Commun. Algebra 22 (1994)(13).Google Scholar
  36. [36]
    Kelarev, A. V.,Artinian band sums of rings, J. Austral. Math. Soc., to appear.Google Scholar
  37. [37]
    Kelarev, A. V.,On the structure of the Jacobson radical of graded rings, submitted.Google Scholar
  38. [38]
    Kelarev, A. V.,On set graded rings, University of Stellenbosch, Department of Mathematics, Technical Report 1993/10.Google Scholar
  39. [39]
    Kelarev, A. V., and J. Okniński,Group graded rings satisfying polynomial identities, Glasgow Math. J., to appear.Google Scholar
  40. [40]
    Klyushin, A. V., and I. B. Kozhukhov,On algebraically compact semigroup rings, Semigroup Forum39 (1989), 215–248.zbMATHCrossRefMathSciNetGoogle Scholar
  41. [41]
    Munn, W. D.,A class of band-graded rings, J. London Math. Soc.45 (1992), 1–16.zbMATHCrossRefMathSciNetGoogle Scholar
  42. [42]
    Murase, I., and H. Tominaga,On powers of Artinian rings without an identity, Math. J. Okayama Univ.20 (1978), 131–140.zbMATHMathSciNetGoogle Scholar
  43. [43]
    Nąstąsescu, C.,Strongly graded rings of finite groups, Commun. Algebra11 (1983), 1033–1071.zbMATHGoogle Scholar
  44. [44]
    Okniński, J.,On the radical of semigroup algebras satisfying polynomial identities, Math. Proc. Cambridge Philos. Soc. 99 (1986), 45–50.MathSciNetzbMATHGoogle Scholar
  45. [45]
    Okniński, J., “Semigroup Algebras”, Marcel Dekker, New York, 1991.Google Scholar
  46. [46]
    Okniński, J., and P. Wauters,Radicals of semigroup rings of commutative semigroups, Math. Proc. Cambridge Philos. Soc.99 (1986), 435–445.MathSciNetCrossRefzbMATHGoogle Scholar
  47. [47]
    Passman, D. S.,Infinite crossed products and group-graded rings, Trans. Amer. Math. Soc.284 (1984), 707–727.zbMATHCrossRefMathSciNetGoogle Scholar
  48. [48]
    Passman, D. S., “Infinite Crossed Products”, Academic Press, New York, 1989.zbMATHGoogle Scholar
  49. [49]
    Ponizovskii, J. S.,On semigroup rings, Semigroup Forum28 (1984), 143–154.zbMATHCrossRefMathSciNetGoogle Scholar
  50. [50]
    Putcha, M. S.,Semilattice decompositions of semigroups, Semigroup Forum6 (1973) (1), 12–34.zbMATHCrossRefMathSciNetGoogle Scholar
  51. [51]
    Rowen, L. H.,General polynomial identities, II J. Algebra38 (1976), 380–392.zbMATHCrossRefMathSciNetGoogle Scholar
  52. [52]
    Rowen, L. H., “Ring Theory”, Academic Press, New York, 1991.zbMATHGoogle Scholar
  53. [53]
    Schiffels, G.,Graduierte Ringe und Modulen, Bonn. Math. Schr.11 (1960), 1–122.MathSciNetGoogle Scholar
  54. [54]
    Shevrin, L. N.,To the theory of epigroups, I and II, Matem. Sbornik185 (1994) (8), 129–160, (9), 153–176.zbMATHGoogle Scholar
  55. [55]
    Shevrin, L. N.,On certain chain conditions for epigroups, to appear.Google Scholar
  56. [56]
    Shevrin, L. N., and L. M. Martynov,Attainability and solvability for classes of algebras, “Semigroups. Structure and Universal Algebraic Problems” (Hungary, Szeged, 1981), Amsterdam, 1985, 397–459.Google Scholar
  57. [57]
    Shevrin, L. N., and J. V. Suhanov,Structural aspects of the theory of semigroup varieties, Isv. Vyssch. Ucheb. Zav. Matern.325 (1989) (6), 3–39.Google Scholar
  58. [58]
    Shevrin, L. N., and A. Ja. Ovsyannikov, “Semigroups and Their Subsemigroup Lattices. Part 1,” Ural Gos. Univ, Sverdlovsk, 1990, 239 p.zbMATHGoogle Scholar
  59. [59]
    Teply, M. L., E. G. Turman and A. Quesada,On semisimple semigroup rings, Proc. Amer. Math. Soc.79 (1980), 157–163.zbMATHCrossRefMathSciNetGoogle Scholar
  60. [60]
    Turman, E. G.,Supplementary semilattice sums of rings, Dissertation, University of Florida, 1980.Google Scholar
  61. [61]
    Volkov, M. V., and A. V. Kelarev,Varieties and bands of associative algebras, Izv. Vyssh. Ucheb. Zav. Matem. 1986, N 9, 16–23.MathSciNetGoogle Scholar
  62. [62]
    Wauters, P.,Rings graded by a semilattice—applications to semigroup rings, “Group and Semigroup Rings”, North-Holland, New York, 1986, 253–267.Google Scholar
  63. [63]
    Wauters, P., and E. Jespers,Rings graded by an inverse semigroup with finitely many idempotents, Houston J. Math.15 (1989), 291–304.zbMATHMathSciNetGoogle Scholar
  64. [64]
    Weissglass, J.,Semigroup rings and semilattice sums of rings, Proc. Amer. Math. Soc.39 (1973), 471–478.zbMATHCrossRefMathSciNetGoogle Scholar
  65. [65]
    Zel'manov, E. I.,Semigroup algebras with identities, Siberian Math. J.18 (1977), 787–798.zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1995

Authors and Affiliations

  • A. V. Kelarev
    • 1
  1. 1.Department of MathematicsUniversity of TasmaniaTasmaniaAustralia

Personalised recommendations