Semigroup Forum

, Volume 49, Issue 1, pp 261–266 | Cite as

The Mitsch order on a semigroup

  • Peter M. Higgins
Short Note


Partial Order Regular Semigroup Transitive Closure Regular Element Regular Representation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Hartwig, R. E.,How to partially order regular elements, Math. Japonica25, No. 1(1980), 1–13.zbMATHMathSciNetGoogle Scholar
  2. [2]
    Higgins, P.M., “Techniques of Semigroup Theory,” Oxford University Press, Oxford, 1992.zbMATHGoogle Scholar
  3. [3]
    Kowol, G. and H. Mitsch,Naturally ordered transformation semigroups, Mh. Math.102(1986), 115–138.zbMATHCrossRefMathSciNetGoogle Scholar
  4. [4]
    Mitsch, H.,A natural partial order for semigroups, Proc. Amer. Soc.97, No. 3(1986), 384–388.zbMATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Nambooripad, K.S.S.,The natural partial order on a regular semigroup Proc. Edin. Math. Soc.23(1980), 249–260.zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1994

Authors and Affiliations

  • Peter M. Higgins
    • 1
  1. 1.Department of MathematicsUniversity of EssexColchesterEngland

Personalised recommendations