Semigroup Forum

, 41:329 | Cite as

Filters and semigroup properties

  • Talin Papazyan
Research Article


The existence of non-fixed, almost translation invariant ultrafilters on any infinite semigroupS satisfying some algebraic properties is established using an ultrafilter approach. The structure of the Stone-Čech compactification of any discrete semigroup is investigated using filters and closed subsets ofßS.


Closed Subset Left Ideal Semigroup Forum Topological Semigroup Minimal Ideal 


  1. [1]
    Berglund, J. F. and N. Hindman,Filters and the weak almost periodic compactification of a discrete semigroup, Trans. Amer. Math. Soc.284(1) (1984), 1–38.MATHCrossRefMathSciNetGoogle Scholar
  2. [2]
    Berglund, J. F., H. D. Junghenn, and P. Milnes, “Analysis on semigroups. Function spaces. Compactifications. Representations”, Wiley, 1989.Google Scholar
  3. [3]
    Comfort, W., and S. Negrepontis, “The theory of ultrafilters”, Springer-Verlag, Berlin, 1974.MATHGoogle Scholar
  4. [4]
    Davenport, D.,The minimal ideal of compact subsemigroups of ßS, Semigroup Forum (to appear).Google Scholar
  5. [5]
    Ellis, R., “Lectures on Topological Dynamics”, Benjamin, New York, 1969.MATHGoogle Scholar
  6. [6]
    Hindman, N.,Sums equal to products in ß N, Semigroup Forum,21 (1980), 221–255.MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    Hindman, N.,The ideal structure of the space of k-uniform ultrafilters on a discrete semigroup, Rocky Mountain J. Math.,16 (1986) 685–701.MATHMathSciNetCrossRefGoogle Scholar
  8. [8]
    Papazyan, T.,The existence of almost translation invariant ultrafilters on any semigroup, Proc. Amer. Math. Soc. (to appear).Google Scholar
  9. [9]
    Ruppert, W.,In a left topological semigroup with dense center the closure of any left ideal is an ideal, Semigroup Forum,36 (1987), 247.CrossRefMathSciNetMATHGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1990

Authors and Affiliations

  • Talin Papazyan
    • 1
  1. 1.Department of Pure MathematicsUniversity of SheffieldSheffield

Personalised recommendations