Semigroup Forum

, Volume 38, Issue 1, pp 337–345 | Cite as

Permutation properties and the fibonacci semigroup

  • Antonio Restivo
Research Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Berstel, J., Mots de Fibonacci, Seminaire d’Informatique Théorique, L.I.T.P. Université Paris VI et VII, Année 1980/81, 57–78.Google Scholar
  2. [2]
    Blyth, R. D., Rewriting products of groups elements, PH.D. Thesis (1987) University of Illinois at Urbana-Champain.Google Scholar
  3. [3]
    Curzio, M., P. Longobardi, M. Maj, Su di un problema combinatorio in teoria dei gruppi, Atti Acc. Lincei Rend. fis. VIII, 74 (1983) 136–142.MATHMathSciNetGoogle Scholar
  4. [4]
    Curzio, M., P. Longobardi, M. Maj, D.J.S. Robinson, A permutational property of groups, Arch. Math. 44 (1985) 385–389.MATHCrossRefMathSciNetGoogle Scholar
  5. [5]
    Karhumaki, J., On cube-free ω-words generated by binary morphism, Discr. Appl. Math. 5 (1983) 279–297.CrossRefMathSciNetGoogle Scholar
  6. [6]
    Lallement, G., Semigroups and combinatorial applications, John Wiley (1979).Google Scholar
  7. [7]
    Lothaire, M., Combinatorics on words, Addison Wesley, Reading (1983)MATHGoogle Scholar
  8. [8]
    Pirillo, G., On permutation properties for finitely generated semigroups, in “Combinatorics” (1986) Proc.s Conference at Passo della Mendola (Italy).Google Scholar
  9. [9]
    Restivo, A., C. Reutenauer, On the Burnside problem for semigroups, Journal of Algebra, 89 (1984) 102–104.MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag New York Inc 1989

Authors and Affiliations

  • Antonio Restivo
    • 1
  1. 1.Dipartimento di Matematica e ApplicazioniUniversita’ di PalermoPalermoItaly

Personalised recommendations