Mathematische Zeitschrift

, Volume 220, Issue 1, pp 461–476

Isotropy of quadratic forms over the function field of a quadric

  • Detlev W. Hoffmann
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [A-K] Arason, J.K., Knebusch, M.: Über die Grade quadratischer Formen. Math. Ann.234, 167–192 (1978)MATHCrossRefMathSciNetGoogle Scholar
  2. [F] Fitzgerald, R.W.: Function fields of quadratic forms. Math. Z.178, 63–76 (1981)MATHCrossRefMathSciNetGoogle Scholar
  3. [H1] Hoffmann D.W.: Function Fields of Quadratic Forms. Doctoral Dissertation, University of California, Berkeley, California 1992Google Scholar
  4. [H 2] Hoffmann, D.W.: Isotropy of 5-dimensional quadratic forms over the function field of a quadric. To appear in: 1992 Santa Barbara Summer Research Institute Proceedings, Proceedings of Symposia in Pure Mathematics, AMSGoogle Scholar
  5. [K 1] Knebusch, M.: Generic splitting of quadratic forms I, Proc. London Math. Soc.33, 65–93 (1976)MATHCrossRefMathSciNetGoogle Scholar
  6. [K 2] Knebusch, M.: Generic splitting of quadratic forms II. Proc. London Math. Soc.34, 1–31 (1977)MATHCrossRefMathSciNetGoogle Scholar
  7. [L] Lam, T.Y.: The Algebraic Theory of Quadratic Forms. Reading, Massachusetts: Benjamin 1973 (revised printing 1980)MATHGoogle Scholar
  8. [M 1] Merkurjev, A.S.: Simple algebras and quadratic forms. Math. USSR Izvestiya38, 215–221 (1992)CrossRefGoogle Scholar
  9. [M2] Merkurjev, A.S.: Generic element inSK 1 for simple algebras.K-Theory7, 1–3 (1993)MATHCrossRefMathSciNetGoogle Scholar
  10. [S] Scharlau, W.: Quadratic and Hermitian Forms. (Grundlehren Math. Wiss. Bd. 270 Berlin, Heidelberg, New York, Tokyo, Springer 1985MATHGoogle Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Detlev W. Hoffmann
    • 1
  1. 1.Institut für Experimentelle MathematikUniversität GH EssenEssenGermany

Personalised recommendations