Mathematische Zeitschrift

, Volume 220, Issue 1, pp 369–397 | Cite as

Length spectra of the Hecke triangle groups

  • Thomas A. Schmidt
  • Mark Sheingorn
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [Artin] E. Artin; Ein mechanisches System mit quasi-ergodischen Bahnen,Abh., Math. Sem. Hamburg 3 (1924) 170–175 (andCollected Papers, Springer-Verlag, New York, 1982, 499–505).Google Scholar
  2. [Ash] A. Ash: Parabolic cohomology of arithmetic subgroups ofSL(2, ℤ) with coefficients in the field of rational functions on the Riemann sphere,Am. J. Math. 111 (1989), 35–51.MATHCrossRefMathSciNetGoogle Scholar
  3. [BKS] T. Bedford, M. Keane and C. Series, eds.:Ergodic Theory, Symbolic Dynamics and Hyperbolic Spaces, Oxford University Press, Oxford, 1991.MATHGoogle Scholar
  4. [Choie-Zagier] Y. J. Choie and D. Zagier: Rational Period Functions forPSL(2, ℤ), inA Tribute to Emil Grosswald, M. Knopp and M. Sheingorn, eds., Cont. Math. 143, AMS, Providence, RI, 1993, 89–108.Google Scholar
  5. [Cohen-Wolfart] P. Cohen and J. Wolfart: Modular embeddings for some non-arithmetic Fuchsian groups,Acta Arith, LVI (1990), 93–110.MathSciNetGoogle Scholar
  6. [Crisp] D. Crisp: The Markoff spectrum, geodesics on hyperbolic surfaces and cutting sequences, Ph. D. dissertation, Flinders Univ. of S. Australia, 1993.Google Scholar
  7. [Crisp-Moran] D. Crisp and W. Moran: Single self-intersection geodesics and the Markoff spectrum, inThe Markoff Spectrum, Diophantine Analysis and Analytic Number Theory, A. Pollington and M. Moran, eds., Marcel Dekker, New York, 1993, 83–94.Google Scholar
  8. [Fine] B. Fine: Trace Classes and Quadratic Forms in the Modular Group, Can. Math. Bull. 37 (1994), 202–212.MATHMathSciNetGoogle Scholar
  9. [Gethner] E. Gethner: Rational Period Functions with Irrational Poles are not Hecke Eigenfunctions inA Tribute to Emil Grosswald, M. Knopp and M. Sheingorn, eds., Cont. Math. 143, AMS, Providence, RI, 1993, 371–384.Google Scholar
  10. [Grady-Newman] M. Grady and M. Newman: Counting Subgroups of Given Index in Hecke Groups, inA Tribute to Emil Grosswald M. Kropp and M. Sheingorn, eds., Cont. Math. 143, AMS, Providence, RI, 1993, 431–436.Google Scholar
  11. [Gutzwiller] M. C. Gutzwiller:Chaos in Classical and Quantum Mechanics, Springer-Verlag, New York 1990.MATHGoogle Scholar
  12. [Haas] A. Haas: Diophantine Approximation on Hyperbolic Orbifolds,Duke Math. J. 56 (1988), 531–547.MATHCrossRefMathSciNetGoogle Scholar
  13. [Haas-Series] A. Haas and C. Series: Hurwitz Constants and Diophantine Approximation on Hecke Groups,JLMS (2) 34 (1986), 219–234.MATHCrossRefMathSciNetGoogle Scholar
  14. [Hall] M. Hall, Jr.: On the Sum and Product of Continued Fractions,Ann. of Math. (2) 48 (1947) 966–993.CrossRefMathSciNetGoogle Scholar
  15. [Hecke] E. Hecke: Über die Bestimmung Dirichletscher Reihen durch ihre Funktionalgleichungen,Math. Ann. 112 (1935) 664–699 (andMathematische Werke, Vandenhoeck & Ruprecht, Göttingen, 1970, 591–626.)CrossRefMathSciNetGoogle Scholar
  16. [Hedlund] G. Hedlund, On the Metrical Transivity of the Geodesics on Closed Surfaces of Constant Negative Curvature,Ann. of Math. 35 (1934) 787–808.CrossRefMathSciNetGoogle Scholar
  17. [Hejhal] H. Hejhal:Eigenvalues of the Laplacian for the Hecke Triangle Groups, Memoirs of the AMS (#469), Providence, 1992.Google Scholar
  18. [Hejhal2] D. Hejhal:The Selberg Trace Formula for PSL (2,R), Springer-Verlag LNM 548, New York, 1976.Google Scholar
  19. [Judge] C. M. Judge: The Laplace Spectrum of Surfaces with Cone Points, Ph.D thesis, University of Maryland, 1993.Google Scholar
  20. [Knopp] M. Knopp: Generation of the graded ring of automorphic forms on the Hecke groups.Bull. Soc. Math. Belg., Sé. B 40 (1988) 81–89.MATHMathSciNetGoogle Scholar
  21. [Knopp2] M. Knopp: On the Cuspidal Spectrum of the Arithmetic Hecke Groups,Math. Comp. 61 (1993), 269–275.MATHCrossRefMathSciNetGoogle Scholar
  22. [Kulkarni] R. Kulkarni: An Arithmetic-Geometric Method in the Study of the Subgroups of the Modular Group,Am. J. of Math. 113 (1991) 1053–1133.MATHCrossRefMathSciNetGoogle Scholar
  23. [Lachaud] G. Lachaud: Continued Franctions, Binary Quadratic Forms, Quadratic Fields, and Zeta Functions, Proc. KIT Math. Workshop, Korean Institute of Technology, Taejon, Korea, 1988.Google Scholar
  24. [Lang-Lim-Tan] M.-L. Lang, C.-H. Lim and S.-P. Tan: Independent Generators for, Congruence Subgroups of the Hecke Groups, pre-print.Google Scholar
  25. [Lehner] J. Lehner: Diophantine Approximation on Hecke Groups,Glasgow Math. J. 27 (1985), 117–127.MATHMathSciNetGoogle Scholar
  26. [Lehner2] J. Lehner: The Local Hurwitz Constant and Diophantine Approximation on Hecke Groups,Math. Comp., 55 (1990), 765–781.MATHCrossRefMathSciNetGoogle Scholar
  27. [Lehner3] J. Lehner:Discontinuous Groups and Automorphic Functions, Math. Surveys 8, AMS, Providence, RI 1964.MATHGoogle Scholar
  28. [Lehner-Sheingorn] J. Lehner and M. Sheingorn: Simple Closed Geodesics on Γ(3) Arise from the Markoff Spectrum,BAMS 11 (1984), 359–362.MATHMathSciNetGoogle Scholar
  29. [Leutbecher] A. Leutbecher: Über die Heckeschen Gruppen G(λ),Abh. Math. Sem. Hamb. 31 (1967), 199–205.MATHMathSciNetGoogle Scholar
  30. [Leutbecher2] A. Leutbecher: Über die Heckeschen Gruppen G(λ), II,Math. Ann. 211 (1974), 63–86.MATHCrossRefMathSciNetGoogle Scholar
  31. [Newman] M. Newman:Integral Matrices, Academic Press, New York, 1972.MATHGoogle Scholar
  32. [Parson] A. Parson: Rational Period Functions and Indefinite Binary Quadratic Forms, III, inA Tribute to Emil Grosswald, M. Knopp and M. Sheingor, eds., Cont. Math. 143, AMS, Providence, RI, 1993, 109–116.Google Scholar
  33. [Pignataro] T. Pignataro: Hausdorff Dimension, Spectral Theory and Applications to the Quantization of Geodesic Flows on Surfaces of Constant Negative Curvature, Ph. D. Thesis, Princeton University, 1984.Google Scholar
  34. [Pollicott] M. Pollicott: Distribution of Closed Geodesics on the Modular Surface and Quadratic Irrationals,Bull. Soc. Math. France, 114 (1986) 431–446.MATHMathSciNetGoogle Scholar
  35. [van der Poorten] A. van der Poorten: An Introduction to Continued Fractions, inDiophantine Analysis, L.M.S. Lect. Note Series 109, J. Loxton and A. van der Poorten eds, Cambridge Univ. Press, Cambridge, 1986.Google Scholar
  36. [Raleigh] J. Raleigh: On the Fourier coefficients of triangle functions,Acta Arith. VIII (1962/63), 107–111.MathSciNetGoogle Scholar
  37. [Randol] B. Randol: The Length Spectrum of a Riemann Surface is Always of Unbounded Multiplicity,PAMS 78 (1980), 455–456.MATHCrossRefMathSciNetGoogle Scholar
  38. [Rosen] D. Rosen: A Class of Continued Fractions Associated with Certain Properly Discontinuous Groups,Duke Math. J. 21 (1954), 549–563.MATHCrossRefMathSciNetGoogle Scholar
  39. [Rosen2] D. Rosen: The Substitutions of the Hecke Group Γ(2cos (π/5)),Arch. Math. 46 (1986), 533–538.MATHCrossRefGoogle Scholar
  40. [Rosen-Schmidt] D. Rosen and T.A. Schmidt: Hecke Groups and Continued Fractions,Bull. Austral. Math. Soc., 46 (1992) 459–475.MathSciNetCrossRefGoogle Scholar
  41. [Sarnak] P. Sarnak: Class Numbers and Indefinite Binary Quadratic Forms,J. of Number Theory 15 (1982) 229–247.MATHCrossRefMathSciNetGoogle Scholar
  42. [Schmidt] T. A. Schmidt: Remarks on the Rosen λ-Continued Fractions, inNumber theory with an emphasis on the Markoff spectrum, A. Pollington and W. Moran, eds., Marcel Dekker, New York, 1993, 227–238.Google Scholar
  43. [Schmidt2] T. A. Schmidt: Rational period functions and parabolic cohomology, J. of Number Theory, to appear.Google Scholar
  44. [Schmidt-Sheingorn] T. A. Schmidt and M. Sheingorn: On the infinite volume Hecke groups,Compositio Math. 95 (1995), 247–262.MATHMathSciNetGoogle Scholar
  45. [Schmidt-Sheingorn2] T. A. Schmidt and M. Sheingorn: Every Riemann surface has a Hall ray at each cusp, submitted.Google Scholar
  46. [Series] C. Series: The Markoff Spectrum of the Hecke GroupG 5,PLMS (3) 57 (1988), 151–181.MATHCrossRefMathSciNetGoogle Scholar
  47. [Sheingorn] M. Sheingorn: Low Height Hecke Triangle Group Geodesics, inA Tribute to Emil Grosswald, M. Knopp and M. Sheingorn, eds., Cont. Math. 143, AMS, Providence, RI, 1993, 545–560.Google Scholar
  48. [Stopple] J. Stopple: A Reciprocity Law for Prime Geodesics,J. of Number Theory 29 (1988) 224–230.MATHCrossRefMathSciNetGoogle Scholar
  49. [Winkler] A. Winkler: Cusp Forms and Hecke Groups,J. Reine Angew. Math. 386 (1988) 187–204.MATHMathSciNetGoogle Scholar
  50. [Wolfart] J. Wolfart: Transzendente Zahlen als Fourierkoeffizienten von Heckes Modulformen,Acta Arith. XXXIX (1981) 193–205.MathSciNetGoogle Scholar
  51. [Wolfart2] J. Wolfart: Graduierte Algebren automorpher Formen zu Dreiccksgruppen,Analysis 1 (1981) 177–190.MATHMathSciNetGoogle Scholar
  52. [Wolfart3] J. Wolfart: Eine arithmetische Eigenschaft automorpher Formen zu gewissen nichtarithmetischen Gruppen,Math. Ann. 262 (1983) 1–21.MATHCrossRefMathSciNetGoogle Scholar
  53. [Wolfart4] J. Wolfart: Diskrete Deformation Fuchsscher Gruppen und ihrer automorphen Formen,J. Reine Angew. Math. (Crelle) 348 (1984) 203–220.MATHMathSciNetCrossRefGoogle Scholar
  54. [Wolfart5] J. Wolfart: Werte hypergeometrischer Funktionen,Invent. Math. 92 (1988) 187–216.MATHCrossRefMathSciNetGoogle Scholar
  55. [Wolfart-Wüstholz] J. Wolfart and G. Wüstholz: Der Überlagerungsradius gewisser algebraischen Kurven und die Werte der Betafunktion an rationellen Stellen,Math. Ann. 273 (1985) 1–15.MATHCrossRefMathSciNetGoogle Scholar
  56. [Zagier] D. Zagier:Zetafunktionen und Quadratische Körper, Springer-Verlag, Berlin, 1981.MATHGoogle Scholar
  57. [Zagier2] D. Zagier: Nombres de Classes et Fractiones Continues,Asterisque 24–25 (1975) 81–97.MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Thomas A. Schmidt
    • 1
  • Mark Sheingorn
    • 2
  1. 1.Oregon State UniversityCorvallisUSA
  2. 2.CUNY-Baruch CollegeNYNew YorkUSA

Personalised recommendations