Mathematische Zeitschrift

, Volume 214, Issue 1, pp 147–154 | Cite as

Convex billiards and a theorem by E. Hopf

  • Misha Bialy


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bellman, R.: Introduction to matrix analysis. New York: McGraw-Hill 1960MATHGoogle Scholar
  2. 2.
    Birkhoff, G.: Dynamical Systems. (Colloq. Publ., vol. IX) Providence, RI: Am. Math. Soc. 1927MATHGoogle Scholar
  3. 3.
    Blaschke, W.: Kreis und Kugel. Berlin: de Gruyter 1956MATHGoogle Scholar
  4. 4.
    Fathi, A.: Une interprétation plus topologique de la démonstration du théorème de Birkhoff. Astérisque103–104, 39–46 (1983)Google Scholar
  5. 5.
    Herman, M.: Sur les courbes invariantes par les difféomorphismes de lánneau. Asterisque103–104 (1983)Google Scholar
  6. 6.
    Hopf, E.: Closed surfaces without conjugate points. Proc. Natl. Acad. Sci. USA34, 47–51 (1984)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Katok, A., Strelcyn, J.-M.: Invariant manifolds, Entropy and billiards, Smooth maps with singularities. (Lect. Notes Math., vol. 1222) Berlin Heidelberg New York: Springer 1986MATHGoogle Scholar
  8. 8.
    Mather, J.: Glancing billiards. Ergodic Theory Dyn. Syst.2, 397–403 (1982)MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Mather, J.: Variational construction of orbits of twist diffeomorphisms. ETH Zürich (Preprint 1990)Google Scholar
  10. 10.
    MacKay, R.S., Meiss, J., Stark, J.: Converse KAM-theory for symplectic twist maps. Nonlinearity2, 555–570 (1989)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Rychlik, M.R.: Periodic points of the billiard ball map in a convex domain. J. Differ. Geom.30, 191–205 (1989)MATHMathSciNetGoogle Scholar
  12. 12.
    Santalo, L.A.: Integral geometry and geometric probability. (Encycl. Math. Appl.) Reading MA: Addison-Wesley (1976)Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Misha Bialy
    • 1
  1. 1.Raymond and Beverly Sackler, Faculty of Exact Sciences, School of Mathematical SciencesTel Aviv UniversityRamat-AvivIsrael

Personalised recommendations