The topological centre of a compactification of a locally compact group

  • Anthony To-Ming Lau
  • John Pym


Compact Group Open Subgroup Main Lemma Topological Semigroup Continuous Homomorphism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Berglund, J.F., Junghenn, H. D., Milnes, P.: Analysis on Semigroups. New York: Wiley 1989MATHGoogle Scholar
  2. 2.
    Ellis, R.: Locally compact transformation groups. Duke Math. J.24, 119–126 (1957)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Granirer, E.: Exposed points of convex sets and weak sequential convergence. Mem. Amer. Math. Soc.123 (1972)Google Scholar
  4. 4.
    Hewitt, E., Ross, K.A.: Abstract Harmonic Analysis, Vol. I. Berlin Heidelberg New York: Springer 1963MATHGoogle Scholar
  5. 5.
    Lau, A. T.: Continuity of Arens multiplication on the dual space of bounded uniformly continuous functions on locally compact groups and topological semigroups. Math. Proc. Cambridge Phil. Soc.99, 273–283 (1986)MATHCrossRefGoogle Scholar
  6. 6.
    Lau, A.T., Medgalchi, A.R., Pym, J.S.: On the spectrum ofL (G). J. London Math. Soc.48, 152–166 (1993)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Mitchell, T.: Topological semigroups and fixed points. Illinois J. Math.14, 630–641 (1970)MATHMathSciNetGoogle Scholar
  8. 8.
    Palmer, T.W.: Classes of nonabelian, noncompact, locally compact groups. Rocky Mountain J. Math.8, 683–741 (1978)MATHMathSciNetCrossRefGoogle Scholar
  9. 9.
    Ruppert, W.: On semigroup compactifications of topological groups, Proc. Roy. Irish Acad. A79A, 179–200 (1979)MathSciNetGoogle Scholar
  10. 10.
    Strauss, D.: Semigroup structures on βℕ. Semigroup Forum44, 238–244 (1992)MATHMathSciNetGoogle Scholar
  11. 11.
    Strauss, D.: ℕ* does not contain an algebraic and topological copy of βℕ. J. London Math. Soc.46, 463–470 (1992)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Anthony To-Ming Lau
    • 1
  • John Pym
    • 2
  1. 1.Department of MathematicsUniversity of AlbertaEdmontonCanada
  2. 2.School of Mathematics & StatisticsThe UniversitySheffieldEngland

Personalised recommendations