Mathematische Zeitschrift

, Volume 219, Issue 1, pp 413–449

Symplectic classification of quadratic forms, and general Mehler formulas

  • Lars Hörmander


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. E. Avron and I. Herbst, Spectral and scattering theory of Schrödinger operators related to the Stark effect. Comm. Math. Phys. 52 (1977) 239–254MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    R. Cushman and J. J. Duistermaat, The behavior of the index of a periodic linear Hamiltonian system under iteration. Advances in Math. 23 1–21 (1977)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Jan Derezinski, Some remarks on Weyl pseudodifferential operators. Journées Équations aux dérivées partielles Saint-Jean-de-Monts (1973) XII:1–14Google Scholar
  4. 4.
    Lars Hörmander, The analysis of linear partial differential operators III. Springer Verlag 1985Google Scholar
  5. 5.
    Lars Hörmander,L 2 estimates for Fourier integral operators with complex phase. Arkiv för matematik 21 (1983), 283–307MATHCrossRefGoogle Scholar
  6. 6.
    John Williamson, On the algebraic problem concerning the normal forms of linear dynamical systems. Amer. J. Math. 58 (1936), 141–163MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    K. Yosida, Functional analysis. Springer Verlag 1968, Grundl. d. math. Wiss. 123Google Scholar
  8. 8.
    A. J. Laub and K. Meyer, Canonical forms for symplectic and Hamiltonian matrices. Celestial Mech. 9 (1974), 213–238CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Lars Hörmander
    • 1
  1. 1.Department of MathematicsUniversity of LundLundSweden

Personalised recommendations