Mathematische Zeitschrift

, Volume 219, Issue 1, pp 49–69 | Cite as

Quasiconformal homeomorphisms on CR 3-manifolds with symmetries

  • Puqi Tang
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abikoff, W.: The Real Analytic Theory of Teichmüller Space. Berlin-Heidelberg-New York-London-Paris-Tokyo-Hong Kong: Springer-Verlag 1976Google Scholar
  2. 2.
    Ahlfors, Lars V.: On quasiconformal mappings. Journal D’Analyse Mathématique3: 1–58 (1953/54)CrossRefGoogle Scholar
  3. 3.
    Boothby, W. M. and Wang, H. C.: On contact manifolds. Annals of Math.68: 721–734 (1958)CrossRefMathSciNetGoogle Scholar
  4. 4.
    Burago, Yu.D. and Zalgaller, V. A.: Geometric Inequalities. Grundlehren der mathematischen Wissenschaften. Vol. 285. Berlin-New York: Springer-Verlag 1988MATHGoogle Scholar
  5. 5.
    Chow, Wei-Liang: Über Systeme von linearen partiellen Differentialgleichungen erster. Ordnung Math. Ann.117: 98–105 (1939)MATHCrossRefGoogle Scholar
  6. 6.
    Epstein, C.L.: CR-structures on three dimensional circle bundles. Invent. math.109: 351–403 (1992)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Kobayashi and Nomizu: Foundations of Differential Geometry. Vol. 1. New York-London: Interscience Publisher/John Wiley & Sons, Inc. 1963MATHGoogle Scholar
  8. 8.
    Korányi, A. and Reimann, H.M.: Foundations for the theory of quasiconformal mappings on the Heisenberg group. Advances in Math (to appear)Google Scholar
  9. 9.
    Korányi, A. and Reimann, H.M.: Quasiconformal mappings on CR manifolds Conference in honor of E. Vesentini. Springer Lecture Notes. No. 1422, pp. 59–75. Berlin-Heidelberg-New York: Springer 1988Google Scholar
  10. 10.
    Korányi, A. and Reimann, H.M.: Quasiconformal mappings on the Heisenberg group. Invent. math.80: 309–338 (1985)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Lempert, László: On three dimensional Cauchy-Riemann manifolds. Journal of AMS5 no. 4: 923–969 (1992)MATHMathSciNetGoogle Scholar
  12. 12.
    Lempert, László: Private communicationGoogle Scholar
  13. 13.
    Li, Zhong: Quasiconformal Mappings and Their Applications in the Theory of Riemann Surfaces. Beijing: Science Publisher 1988Google Scholar
  14. 14.
    Liebermann, P.: Sur les automorphismes infinitésimaux des structures symplectiques et des structures de contact. Colloque de géométrie différentielle globale. Bruxelles. pp. 37–59 (1958)Google Scholar
  15. 15.
    Mostow, G.D.: Strong rigidity of locally symmetric spaces. Ann. Math. Stud.78: 1–195 (1973)MathSciNetGoogle Scholar
  16. 16.
    Nag, S.: The Complex Analytic Theory of Teichmüller Spaces. New York-Toronto-Chichester-Brisbane-Singapore: John Wiley & Sons 1988MATHGoogle Scholar
  17. 17.
    Reid, William T.: Ordinary Differential Equations. New York-London-Sydney-Toronto: John Wiley & Sons, Inc. 1971MATHGoogle Scholar
  18. 18.
    Stein, Elias M.: Singular Integrals and Differentiability Properties of Functions. Princeton, New Jersey: Princeton University Press 1970MATHGoogle Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Puqi Tang
    • 1
  1. 1.Department of MathematicsPurdue UniversityWest LafayetteUSA

Personalised recommendations