Mathematische Zeitschrift

, Volume 218, Issue 1, pp 417–426 | Cite as

Inequalities for spherically symmetric solutions of the wave equation

  • Detlef Müller
  • Andreas Seeger
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. Fefferman: The multiplier problem for the ball. Annals of Math.94: 331–336 (1971)CrossRefMathSciNetGoogle Scholar
  2. 2.
    C. Fefferman and E.M. Stein: Some maximal inequalities. Amer. J. Math.93: 107–115 (1971)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    J. Garcia-Cuerva and J.L. Rabio de Francia: Weighted norm inequalities and related topics. North-Holland (1985)Google Scholar
  4. 4.
    L. Hörmander: Fourier integral operators I. Acta Math.127: 79–183 (1971)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    M. Kaneko and G. Sunouchi: On the Littlewood-Paley and Marcinkiewicz functions in higher dimensions. Tôhoku Math. J.37: 343–365 (1985)MATHMathSciNetGoogle Scholar
  6. 6.
    W. Littman: The wave operator andL P-norms. J. Math. and Mech.12: 55–68 (1963)MATHMathSciNetGoogle Scholar
  7. 7.
    A. Miyachi: On some estimates for the wave equation inL P andH P. Journ. Fac. Sci. Tokyo, Sci. IA27: 331–354 (1980)MATHMathSciNetGoogle Scholar
  8. 8.
    G. Mockenhaupt, A. Seeger and C.D. Sogge: Wave front sets, local smoothing and Bourgain’s circular maximal theorem. Annals of Math.136: 207–218 (1992)CrossRefMathSciNetGoogle Scholar
  9. 9.
    G. Mockenhaupt, A. Seeger and C.D. Sogge: Local smoothing of Fourier integral operators and Carleson-Sjölin estimates. J. Math. Soc.6: 65–131 (1993)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    J. Peral:L p estimates for the wave equation. J. Funct. Anal.36: 114–145 (1980)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    C.D. Sogge: Propagation of singularities and maximal functions in the plane. Invent. Math.104: 349–376 (1991)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    E.M. Stein: Harmonic analysis: Real variable methods, orthogonality and oscillatory integrals. Princeton Univ. Press (1993)Google Scholar
  13. 13.
    E. M. Stein and G. Weiss: Introduction to Fourier analysis on Euclidean spaces. Princeton Univ. Press, Princeton, N.J. (1971)MATHGoogle Scholar
  14. 14.
    R. Strichartz: Restrictions of Fourier transforms to quadratic surfaces and decay of solutions of wave equations. Duke Math. J.44: 705–714 (1977)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • Detlef Müller
    • 1
  • Andreas Seeger
    • 2
  1. 1.Institut de Recherche Mathématique AvancéeUniversité Louis Pasteur et C.N.R.S.Strasbourg CedexFrance
  2. 2.Department of MathematicsUniversity of WisconsinMadisonUSA

Personalised recommendations