Mathematische Zeitschrift

, Volume 218, Issue 1, pp 103–122 | Cite as

Symplectic homology II

A general construction
  • K. Cieliebak
  • A. Floer
  • H. Hofer


Symplectic Manifold Natural Transformation Direct Limit Morse Index Admissible Pair 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Conley and E. Zehnder. Morse type index theory for flows and periodic solutions of Hamiltonian equations. Comm. Pure Appl. Math. 37 (1984), 207–253.zbMATHMathSciNetGoogle Scholar
  2. 2.
    I. Ekeland and H. Hofer: Symplectic topology and Hamiltonian dynamics. Math. Zeit. 200 (1990), 355–378.CrossRefMathSciNetGoogle Scholar
  3. 3.
    Ya. Eliashberg and H. Hofer. An energy-capacity inequality for the symplectic homology of a flat at infinity hypersurface. Symplectic geometry (ed. by D. Salamon), London Math. Soc. Lecture Note Series 192 (1993), 95–115Google Scholar
  4. 4.
    Ya. Eliashberg and H. Hofer. Towards the definition of a sympletic boundary. Geom. and Funct. Analysis 2 (1992), 211–220.zbMATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Ya. Eliashberg and H. Hofer. Unseen symplectic boundariès. To appear Proceedings of a Conference in honour of E. Calabi, Pisa 1993.Google Scholar
  6. 6.
    A. Floer. A relative Morse index for the symplectic action. Comm. Pure Appl. Math. 41 (1988), 393–407.zbMATHMathSciNetGoogle Scholar
  7. 7.
    A. Floer. The unregularized gradient flow of the symplectic action. Comm. Pure Appl. Math. 41 (1988), 775–813.zbMATHMathSciNetGoogle Scholar
  8. 8.
    A. Floer. Morse theory for Lagrangian intersections. J. Diff. Geom. 28 (1988), 513–547.zbMATHMathSciNetGoogle Scholar
  9. 9.
    A. Floer. Symplectic fixed points and holomorphic spheres. Comm. Math. Physics 120 (1989), 575–611.zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    A. Floer and H. Hofer. Coherent orientations for periodic orbit problems in symplectic geometry. Math. Zeit. 212 (1993), 13–38.zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    A. Floer and H. Hofer. Symplectic homology I. Math. Zeit. 215 (1994), 37–88.zbMATHMathSciNetGoogle Scholar
  12. 12.
    A. Floer, H. Hofer and D. Salamon. Transversality results in the elliptic, Morse theory for the action functional. Preprint.Google Scholar
  13. 13.
    A. Floer, H. Hofer and K. Wysocki. Applications of Symplectic homology I. To appear Math. Zeit.Google Scholar
  14. 14.
    K. Cieliebak, A. Floer, H. Hofer and K. Wysocki. Applications of Sympletic homology II. In preparation.Google Scholar
  15. 15.
    M. Gromov. Pseudo holomorphic curves in symplectic manifolds. Inv. math. 82 (1985), 307–347.zbMATHCrossRefGoogle Scholar
  16. 16.
    H. Hofer, D. Salamon. Floer Homology and Novikov rings. To appear Floer Memorial Volume, BirkhäuserGoogle Scholar
  17. 17.
    H. Hofer and E. Zehnder. A new capacity for symplectic manifolds. Analysis et cetera. Academic Press (1990), 405–427.Google Scholar
  18. 18.
    D. McDuff, Symplectic manifolds with contact type boundaries. Inv. math. 103 (1991), 651–671.zbMATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    D. Salamon and E. Zehnder. Morse theory for periodic solutions of Hamiltonian systems and the Maslov index. Comm. Pure Appl. Math. 45 (1992), 1303–1360.zbMATHMathSciNetGoogle Scholar
  20. 20.
    M. Schwarz. Morse homology. Birkhäuser, Progress in Math. Vol. 111 (1993).Google Scholar

Copyright information

© Springer-Verlag 1995

Authors and Affiliations

  • K. Cieliebak
    • 1
  • A. Floer
    • 1
  • H. Hofer
    • 1
  1. 1.MathematikETH ZentrumZürichSwitzerland

Personalised recommendations