Mathematische Zeitschrift

, Volume 215, Issue 1, pp 583–620 | Cite as

Wavelet approximation methods for pseudodifferential equations: I Stability and convergence

  • W. Dahmen
  • S. Prössdorf
  • R. Schneider
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Agranovich, M.S.: On elliptic pseudodifferential operators on a closed curve. Trans. Mosc. Math. Soc.47, 23–74 (1985)Google Scholar
  2. 2.
    Arnold, D.N., Wendland, W.L.: The convergence of spline collocation for strongly elliptic equations on curves. Numer. Math.47, 317–341 (1985)MATHCrossRefMathSciNetGoogle Scholar
  3. 3.
    Wavelet analysis and the numerical solutions of partial differential equations. Progress Report. Cambridge, MA. Aware Inc.: June 1990Google Scholar
  4. 4.
    Ben-Artzi, A., Ron, A.: On the integer translates of a compactly supported function: dual bases and linear projectors. SIAM J. Math. Anal.21, 1550–1562 (1990)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Beylkin, G., Coifman, R., Rokhlin, V.: Fast wavelet transforms and numerical algorithms I. Commun. Pure Appl. Math.XLIV, 141–183 (1991)MathSciNetGoogle Scholar
  6. 6.
    de Boor, C., Höllig, K., Riemenschneider, S.: Box-splines. Berlin Heidelberg New York: Springer 1992Google Scholar
  7. 7.
    Cavaretta, A.S., Dahmen, W., Micchelli, C.A.: Stationary Subdivision. Mem. Am. Math. Math. Soc.93, no. 453 (1991)Google Scholar
  8. 8.
    Chui, C.K., Stöckler, J., Ward, J.D.: Compactly supported box spline wavelets. Approx. Theory Appl.8, 77–100 (1992)MATHMathSciNetGoogle Scholar
  9. 9.
    Cohen, A., Daubechies, I., Feauveau, J.-C.: Biorthogonal bases of compactly supported wavelets. Comm. Pure Appl. Math.45, 485–560 (1992)MATHMathSciNetGoogle Scholar
  10. 10.
    Coifman, R., Meyer, Y.: Au-delà des Opérateurs Pseudo-Différentiels. (Astérisque, no. 57) Paris: Soc. Math. Fr. 1978MATHGoogle Scholar
  11. 11.
    Costabel, M.: Principles of boundary element methods. Comp. Phys. Rep.6, 243–274 (1987)CrossRefMathSciNetGoogle Scholar
  12. 12.
    Costabel, M., McLean, W.: Spline collocation for strongly elliptic equations on the torus. Numer. Math.62, 511–538 (1992)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Costabel, M., Wendland, W.: Strong ellipticity of boundary integral operators. J. Reine Angew. Math.372, 39–63 (1986)MathSciNetGoogle Scholar
  14. 14.
    Dahmen, W., Kunoth, A.: Multilevel preconditioning. Numer. Math.63, 315–344 (1992)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Dahmen, W., Micchelli, C.A.: On the local linear independence of the translates of a box spline. Studia Math.82, 243–263 (1985)MATHMathSciNetGoogle Scholar
  16. 16.
    Dahmen, W., Micchelli, C.A.: Biorthogonal wavelet expansion. (in preparation)Google Scholar
  17. 17.
    Dahmen, W., Prössdorf, S., Schneider, R.: Wavelet approximation methods for pseudodifferential equations. II. Matrix compression and fast solution. Adv. Comput. Math.1, 259–335 (1993)MATHCrossRefMathSciNetGoogle Scholar
  18. 18.
    Daubechies, I.: Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math.41, 909–996 (1988)MATHMathSciNetGoogle Scholar
  19. 19.
    DeVore, R., Jawerth, B., Popov, V.: Compression of wavelet decompositions. Am. J. Math.114, 737–785 (1992)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    DeVore, R., Popov, V.: Interpolation of Besov spaces. Trans. Am. Math. Soc.305, 397–414 (1988)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Glowinski, R.R., Lawton, W.M., Ravachol, M., Tenenbaum, E.: Wavelet solution of linear and nonlinear elliptic, parabolic and hyperbolic problems in one space dimension. Cambridge, MA: Aware Inc. (Preprint 1989)Google Scholar
  22. 22.
    Hackbusch, W., Nowak, Z.P.: On the fast matrix multiplication in the boundary element method by panel clustering. Numer. Math.54, 463–491 (1989)MATHCrossRefMathSciNetGoogle Scholar
  23. 23.
    Hörmander, L.: The Analysis of Linear Partial Differential Operators, vols. 1–4. (Grundlehren Math. Wiss.) Berlin Heidelberg New York: Springer 1985Google Scholar
  24. 24.
    Jaffard, S.: Wavelet methods for fast resolution of elliptic problems. (Preprint 1990)Google Scholar
  25. 25.
    Jia, R.Q., Micchelli, C.A.: Using the refinement equation for the construction of prewavelets II: Powers of two. In: Laurent, P., Le Méhanté, A., Schumaker, L.L. (eds.) pp. 209–246. Curves and Surfaces. New York: Academic Press 1991Google Scholar
  26. 26.
    Johnen, H., Scherer, K.: On thek-functional and moduli of continuity and some applications. In: Schempp, W., Zeller, K. (eds.) Constructive Theory of Functions of Several Variables. (Lect. Notes Math., vol. 571, pp. 119–140). Berlin Heidelberg New York: Springer 1977CrossRefGoogle Scholar
  27. 27.
    Kohn, J., Nirenberg, L.: On the algebra of pseudo-differential operators. Commun. Pure Appl. Math.,18, 269–305 (1965)MATHMathSciNetGoogle Scholar
  28. 28.
    Kumano-go, H.: Pseudodifferential Operators. Boston: MIT Press 1981Google Scholar
  29. 29.
    Mallat, S.: Multiresolution approximation and wavelet orthonormal bases ofL 2. Trans. Am. Math. Soc.315, 69–88 (1989)MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    McLean, W.: Local and global descriptions of periodic pseudodifferential operators. Math. Nachr.150, 151–161 (1991)MATHMathSciNetGoogle Scholar
  31. 31.
    McLean, W.: Periodic pseudodifferential operators and periodic function spaces. Technical Report. Australia: Univ. of New South Wales 1989Google Scholar
  32. 32.
    Meyer, Y.: Ondelettes et Opèrateurs 1: Ondelettes. Paris: Hermann 1990Google Scholar
  33. 33.
    Mikhlin, S., Prössdorf, S.: Singular Integral Operators, Berlin Heidelberg New York: Springer 1986Google Scholar
  34. 34.
    Prössdorf, S.: A localization principle in the theory of finite element methods. In: Friedrich, V. et al. (eds.) Probleme und Methoden der Mathematischen Physik. 8. Tagung in Karl-Marx-Stadt, 1983. (Teubner-Texte Math., Bd. 63, pp. 169–1777) Leipzig: Teubner 1984Google Scholar
  35. 35.
    Prössdorf, S.: Ein Lokalisierungsprinzip in der Theorie der Spline-Approximationen und einige Anwendungen. Math. Nachr.119, 239–255 (1984)MATHMathSciNetGoogle Scholar
  36. 36.
    Prössdorf, S., Rathsfeld, A.: A spline collocation method for singular integral equations with piecewise continuous coefficients. Integral Equations Oper. Theory7, 536–560 (1984)MATHCrossRefGoogle Scholar
  37. 37.
    Prössdorf, S., Rathsfeld, A.: Mellin techniques in the numerical analysis for one-dimensional singular integral equations Report R-MATH-06/88. Berlin: Karl-Weierstrass-Institut 1988Google Scholar
  38. 38.
    Prössdorf, S., Schmidt, G.: A finite element collocation method for singular integral equations. Math. Nachr.100, 33–60 (1981)MATHMathSciNetGoogle Scholar
  39. 39.
    Prössdorf, S., Schneider, R.: A spline collocation method for multi-dimensional strongly elliptic pseudodifferential operators of order zero. Integral Equations Oper. Theory4, 399–435 (1991)CrossRefGoogle Scholar
  40. 40.
    Prössdorf, S., Schneider, R.: Spline approximation methods for multidimensional periodic pseudodifferential equations. Integral Equations Oper. Theory15, 626–672 (1992)MATHCrossRefGoogle Scholar
  41. 41.
    Prössdorf, S., Schneider, R.: Pseudodifference operators—A symbolic calculus for approximation methods for periodic pseudodifferential equations. Preprint TH-Fb Math. Darmstadt 1991Google Scholar
  42. 42.
    Prössdorf, S., Silbermann, B.: Numerical Analysis for Integral and Related Operator Equations. Berlin: Akademie Verlag, 1991, and Boston Basel Stuttgart: Birkhäuser 1991Google Scholar
  43. 43.
    Riemenschneider, S., Shen, Z.: Wavelets and pre-wavelets in low dimensions. J. Approx. Theory71, 18–38 (1992)MATHCrossRefMathSciNetGoogle Scholar
  44. 44.
    Schmidt, G.: On ∈-collocation for pseudodifferential equations on closed curves. Math. Nachr.126, 183–196 (1986)MATHMathSciNetGoogle Scholar
  45. 45.
    Schmidt, G.: Splines und die näherungsweise Lösung von Pseudodifferentialgleichungen auf geschlossenen Kurven. Report R-MATH-09/86. Berlin: Karl-Weierstraß-Institut 1986MATHGoogle Scholar
  46. 46.
    Shubin, M.A.: Pseudodifferential Operators and Spectral Theory. Berlin Heidelberg New York: Springer 1985Google Scholar
  47. 47.
    Silbermann, B.: Lokale Theorie des Reduktionsverfahrens für Toeplitzoperatoren. Math. Nachr.104, 137–146 (1981)MATHMathSciNetGoogle Scholar
  48. 48.
    Silbermann, B.: Lokale Theorie des Reduktionsverfahrens für singuläre Integraloperatoren. Z. Anal. Anwend.1, 45–56 (1982)MATHMathSciNetGoogle Scholar
  49. 49.
    Stein, E.M.: Singular integrals and differentiability properties of functions. Princeton, NJ: Princeton University Press 1970MATHGoogle Scholar
  50. 50.
    Taylor, M.: Pseudodifferential operators, Princeton, NJ: Princeton University Press 1981MATHGoogle Scholar
  51. 51.
    Triebel, H.: Interpolation Theory, Function Spaces and Differential Operators. Amsterdam: North-Holland 1978Google Scholar
  52. 52.
    Wendland, W.L.: On some mathematical aspects of boundary element methods for elliptic problems. In: Whiteman, J. (ed.) Mathematics of Finite Elements and Applications V, pp. 193–227. London: Academic Press 1985Google Scholar
  53. 53.
    Wendland, W.L.: Strongly elliptic boundary integral equations. In: Iserles, A., Powell, M. (eds.) The State of the Art in Numerical Analysis, pp. 511–562, Oxford: Clarendon 1987Google Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • W. Dahmen
    • 1
  • S. Prössdorf
    • 2
  • R. Schneider
    • 3
  1. 1.Institut für Geometrie und Praktische MathematikRWTH AachenAachenGermany
  2. 2.Institut für Angewandte Analysis und StochastikBerlinGermany
  3. 3.Fachbereich MathematikTechnische Hochschule DarmstadtDarmstadtGermany

Personalised recommendations