Mathematische Zeitschrift

, Volume 215, Issue 1, pp 347–365 | Cite as

Free hyperplane arrangements betweenA n−1 andB n

  • Paul H. Edelman
  • Victor Reiner


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [BZ] Björner, A., Ziegler, G.: Broken circuit complexes: factorizations and generalizations. J. Comb. Theory, Ser. B2, 214–217 (1992)Google Scholar
  2. [CH] Chvátal, V., Hammer, P.L.: Aggregation of inequalities in integer programming. Ann. Discrete Math.1, 145–162 (1977)CrossRefGoogle Scholar
  3. [Di] Dirac, G.A.: On rigid circuit graphs. Abh. Math. Semin. Univ. Hamburg25, 71–76 (1961)MATHMathSciNetGoogle Scholar
  4. [ER] Edelman, P.H., Reiner, V.: A counterexample to Orlik's conjecture. Proc. Am. Math. Soc.118, 927–929 (1993)MATHCrossRefMathSciNetGoogle Scholar
  5. [FG] Fulkerson, D.R., Gross, O.A.: Incidence matrices and interval graphs. Pac. J. Math.15, 835–855 (1965)MATHMathSciNetGoogle Scholar
  6. [Go] Golumbic, M.: Algorithmic graph theory and perfect graphs. New York: Academic Press 1980MATHGoogle Scholar
  7. [HIS] Hammer, P.L., Ibaraki, T., Siméone, B.: Threshold sequences. SIAM J. Algebraic Discrete Methods2, 39–49 (1981)MATHMathSciNetGoogle Scholar
  8. [JS] Jósefiak, T., Sagan, B.: Basic derivations for subarrangements of Coxeter arrangements. J. Algebraic Combinatorics2, 291–320 (1993)CrossRefGoogle Scholar
  9. [Or] Orlik, P.: Introduction to Arrangements. (CBMS Ser., no. 72) Providence, RI: Am. Math. Soc. 1989Google Scholar
  10. [OT] Orlik, P., Terao, H.: Arrangements of hyperplanes. Berlin, Heidelberg, New York: Springer 1992MATHGoogle Scholar
  11. [St1] Stanley, R.P.: Supersolvable lattices. Algebra Univers.2, 197–217 (1972)MATHMathSciNetCrossRefGoogle Scholar
  12. [St2] Stanley, R.P.: Enumerative Combinatorics, vol. I. Monterey, CA: Wadsworth & Brooks/Cole 1986Google Scholar
  13. [Te] Terao, H.: Modular elements of lattices and topological fibration. Adv. Math.62, 135–154 (1986)MATHCrossRefMathSciNetGoogle Scholar
  14. [Th] Thrall, R.M.: A combinatorial problem. Mich. J. Math.1, 81–88 (1952)MATHCrossRefMathSciNetGoogle Scholar
  15. [Za] Zaslavsky, T.: The geometry of root systems and signed graphs. Am. Math. Monthly88, 88–105 (1981)MATHCrossRefMathSciNetGoogle Scholar
  16. [Zi] Ziegler, G.: Matroid representations and free arrangements. Trans. Am. Math. Soc.320, 525–541 (1990)MATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Paul H. Edelman
    • 1
  • Victor Reiner
    • 1
  1. 1.School of MathematicsUniversity of MinnesotaMinneapolisUSA

Personalised recommendations