Mathematische Zeitschrift

, Volume 208, Issue 1, pp 209–223 | Cite as

The category of modules with good filtrations over a quasi-hereditary algebra has almost split sequences

  • Claus Michael Ringel


Exact Sequence Direct Summand Characteristic Module Full Subcategory Composition Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AR] Auslander, M. Reiten, I.: Applications of contravariantly finite subcategories. Adv. Math. (to appear)Google Scholar
  2. [AS] Auslander, M., Smalø, S.: Almost split sequences in subcategories. J. Algebra69, 426–454 (1981)zbMATHCrossRefMathSciNetGoogle Scholar
  3. [CI] Collingwood, D.H., Irving, R.: A decomposition theorem for certain self-dual modules in the category O. Duke Math. J.58, 89–102 (1989)zbMATHCrossRefMathSciNetGoogle Scholar
  4. [CPS1] Cline, E., Parshall, B., Scott, L.: Finite dimensional algebras and highest weight categories, J. Reine Angew. Math.391, 85–99 (1988)zbMATHMathSciNetGoogle Scholar
  5. [CPS2] Cline, E., Parshall, B., Scott, L.: Duality in highest weight categories. (to appear)Google Scholar
  6. [DR1] Dlab, V., Ringel, C.M.: Quasi-hereditary algebras. Ill. J. Math.33, 280–291 (1989)zbMATHMathSciNetGoogle Scholar
  7. [DR2] Dlab, V., Ringel, C.M.: A construction for quasi-hereditary algebras. Compos. Math.70, 155–175 (1989)zbMATHMathSciNetGoogle Scholar
  8. [DR3] Dlab, V., Ringel, C.M.: Filtrations of right ideals related to projectivity of left ideals. In: Malliavin, M.-P. (ed.) Séminaire d'Algèbre. (Lect. Notes Math., vol. 1404, pp. 95–107, Berlin Heidelberg New York: Springer 1989Google Scholar
  9. [H] Happel, D.: Triangulated categories in the representation theory of finite dimensional algebras. (Lond. Math. Soc. Lect. Note Ser., vol. 119) Cambridge: Cambridge University Press 1988zbMATHGoogle Scholar
  10. [M] Miyashita, Y.: Tilting modules of finite projective dimension. Math. Z.193, 113–146 (1986)zbMATHCrossRefMathSciNetGoogle Scholar
  11. [PS] Parshall, B., Scott, L.: Derived categories, quasi-hereditary algebras and algebraic groups. Proceedings of the Ottawa-Moosonee Workshop in Algebra. Carleton Univ. Notes3 (1988)Google Scholar
  12. [R] Ringel, C.M.: Tame algebras and integral quadratic forms. (Lect. Notes Math., vol. 1099) Berlin Heidelberg New York: Springer 1984zbMATHGoogle Scholar
  13. [S] Scott, L.L.: Simulating algebraic geometry with algebra I: Derived categories and Morita theory, Proc. Symp. Pure Math.47.1, 271–282 (1987)Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Claus Michael Ringel
    • 1
  1. 1.Fakultät für Mathematik, UniversitätBielefeld 1Federal Republic of Germany

Personalised recommendations