Mathematische Zeitschrift

, 211:409 | Cite as

The stationary exterior 3 D-problem of Oseen and Navier-Stokes equations in anisotropically weighted Sobolev spaces

  • Reinhard Farwig


  1. 1.
    Adams, R.A.: Sobolev Spaces, New York: Academic Press 1975MATHGoogle Scholar
  2. 2.
    Agmon, S., Douglis, A., Nirenberg, L.: Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions II. Commun. Pure Appl. Math.17, 35–92 (1964)MATHMathSciNetGoogle Scholar
  3. 3.
    Babenko, K.I.: On stationary solutions of the problem of flow past a body of a viscous incomporessible fluid. Math. USSR Sb.20, 1–25 (1973)MATHCrossRefMathSciNetGoogle Scholar
  4. 4.
    Bemelmans, J.: Eine Außenraumaufgabe für die instationären Navier-Stokes-Gleichungen. Math. Z.162, 145–173 (1978)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Bemelmans, J.: Strömungen zäher Flüssigkeiten. Sonderforschungsbereich 72, Vorlesungsreihe No.2. Universität Bonn (1980)Google Scholar
  6. 6.
    Cattabriga, L.: Su un problema al contorno relativo al sistema di equazioni di Stokes Rend. Semin. Mat. Univ. Padova31, 308–340 (1961)MathSciNetMATHGoogle Scholar
  7. 7.
    Chang, I-D., Finn, R.: On the solutions of a class of equations occurring in continuum mechanics, with applications to the Stokes paradox. Arch. Ration. Mech. Anal.7, 388–401 (1961)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Clark, D.C.: The vorticity at infinity for solutions of the stationary Navier-Stokes equations in exterior domains. Indiana Univ. Math. J.20, 633–654 (1970/71)CrossRefGoogle Scholar
  9. 9.
    Deuring, P., von Wahl, W., Weidemaier, P.: Das lineare Stokes-System in ℝ3. I. Vorlesungen über das Innenraumproblem. Bayreuther Math. Schr.27 (1988)Google Scholar
  10. 9a.
    Deuring, P., von Wahl, W.: Das lineare Stokes-System in ℝ3. II. Das Außenraumproblem. Bayreuther Math. Schr.28, 1–109 (1989)Google Scholar
  11. 10.
    Farwig, R.: Das stationäre Außenraumproblem der Navier-Stokes-Gleichungen bei nichtverschwindender Anströmgeschwindigkeit in anisotrop gewichteten Sobolevräumen. SFB 256 preprint no.110 (Habilitationsschrift). University of Bonn (1990)Google Scholar
  12. 11.
    Farwig, R.: A variational approach in weighted Sobolev spaces to the operator −Δ+ϖ/ϖx 1 in exterior domains of ℝ3. Math. Z.210, 449–464 (1992)MATHMathSciNetGoogle Scholar
  13. 12.
    Faxén, H.: Fredholm'sche Integralgleichungen zu der Hydrodynamik zäher Flüssigkeiten I. Ark. Mat. Astr. Fys.21 A, No. 14 (1928/29)Google Scholar
  14. 13.
    Finn, R.: On the steady state solutions of the Navier-Stokes partial differential equations. Arch. Ration. Mech. Anal.3, 381–396 (1959)MATHCrossRefMathSciNetGoogle Scholar
  15. 14.
    Finn, R.: On the exterior stationary problem for the Navier-Stokes equations, and associated perturbation problems. Arch. Ration. Mech. Anal.19, 363–406 (1965)MATHCrossRefMathSciNetGoogle Scholar
  16. 15.
    Finn, R.: Mathematical questions relating to viscous fluid flow in an exterior domain. Rocky Mt. J. Math.3, 107–140 (1973)MATHMathSciNetCrossRefGoogle Scholar
  17. 16.
    Fujita, H.: On the existence and regularity of the steady-state solutions of the Navier-Stokes equations. J. Fac. Sci. Univ. Tokyo9, 59–102 (1961)MATHGoogle Scholar
  18. 17.
    Galdi, P.G., Simader, C.G.: Existence, uniqueness andL q-estimates for the Stokes problem in an exterior domain. Arch. Ration. Mech. Anal.112, 291–318 (1990)MATHCrossRefMathSciNetGoogle Scholar
  19. 18.
    García-Cuerva, J., Rubio de Francia, J.L.: Weighted norm inequalities and related topics. Amsterdam: North-Holland 1985MATHGoogle Scholar
  20. 19.
    Guirguis, G.H.: On the existence, uniqueness and regularity of the exterior Stokes problem in ℝ3. Commun. Partial Differ. Equations11, 567–594 (1986)MATHMathSciNetGoogle Scholar
  21. 20.
    Guirguis, G.H., Gunzburger, M.D.: On the approximation of the exterior Stokes problem in three dimensions. RAIRO Modélisation Math. Anal. Numér.21, 445–464 (1987)MATHMathSciNetGoogle Scholar
  22. 21.
    Heywood, J.G.: On uniqueness questions in the theory of viscous flow. Acta Math.136, 61–102 (1976)MATHCrossRefMathSciNetGoogle Scholar
  23. 22.
    Kozono, H., Sohr, H.: On a new class of generalized solutions of the Stokes equations in exterior domains. (Preprint 1989)Google Scholar
  24. 23.
    Ladyzhenskaya, O.A.: The mathematical theory of viscous incompressible flow. New York: Gordon & Breach 1969MATHGoogle Scholar
  25. 24.
    Leray, J.: Étude de diverses équations, intégrales non linéaires et de quelques problèmes que pose l'hydrodynamique. J. Math. Pures Appl., IX. Sér.12, 1–82 (1933)MATHGoogle Scholar
  26. 25.
    Maslennikova, V.N., Timoshin, M.A.: OnL p-theory of stationary Stokes flows past obstacles. Conference Abstracts EQUADIFF 7, Prag (1989)Google Scholar
  27. 26.
    Oseen, C.W.: Neuere Methoden und Ergebnisse in der Hydrodynamik. Leipzig: Akademische Verlagsgesellschaft 1927MATHGoogle Scholar
  28. 27.
    Sohr, H., Varnhorn, W.: On decay properties of the Stokes equations in exterior domains. In: Heywood, J.G., Masuda, K., Rautmann, R., Solonnikov, V.A. (eds.). The Navier-Stokes equations, theory and numerical methods. Proceedings, Oberwolfach 1988, (Lect. Notes Math., vol. 1431, pp. 134–151) Berlin Heidelberg New York: Springer 1990CrossRefGoogle Scholar
  29. 28.
    Specovius-Neugebauer, M.: Exterior Stokes problems and decay at infinity. Math. Meth. Appl. Sci.8, 351–367 (1986)MATHMathSciNetGoogle Scholar
  30. 29.
    Stein, E.M.: Note on singular integrals. Proc. Am. Math. Soc.8, 250–254 (1957)MATHCrossRefGoogle Scholar
  31. 30.
    Stokes, G.G.: On the effect of the internal friction of fluids on the motion of pendulums. Math. Phys. Pap.3, 1 (1851)Google Scholar
  32. 31.
    Torchinsky, A.: Real-variable methods in harmonic analysis. Orlando: Academic Press 1986MATHGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Reinhard Farwig
    • 1
  1. 1.Institut für MathematikRWTH AachenAachenFederal Republic of Germany

Personalised recommendations