Mathematische Zeitschrift

, Volume 206, Issue 1, pp 623–649

Non-commutative moment problems

  • Konrad Schmüdgen


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Akhiezer, N.I.: The classical moment problem and some related questions in analysis. Edinburgh: Oliver and Boyd 1965MATHGoogle Scholar
  2. 2.
    Berg, C., Christensen, J.P.R., Ressel, P.: Harmonic analysis on semigroups. Theory of positive definite and related functions. Berlin Heidelberg New York: Springer 1984MATHGoogle Scholar
  3. 3.
    Dixmier, J.:C *-Algebras. Amsterdam: North-Holland 1977Google Scholar
  4. 4.
    Dixmier, J.: Enveloping algebras. Amsterdam: North-Holland 1976Google Scholar
  5. 5.
    Fell, J.M.G.: The dual spaces ofC *-algebras. Trans. Am. Math. Soc.94, 365–403 (1960)MATHCrossRefMathSciNetGoogle Scholar
  6. 6.
    Fell, J.M.G.: Weak containment and induced representations of groups. Canad. J. Math.14, 237–268 (1962)MATHMathSciNetGoogle Scholar
  7. 7.
    Flato, M., Simon, J., Snellman, H., Sternheimer, D.: Simple facts about analytic vectors and integrability. Ann. Sci. l'Ecole Norm. Sup.5, 423–434 (1972)MATHMathSciNetGoogle Scholar
  8. 8.
    Fuglede, B.: The multidimensional moment problem. Expo. Math.1, 47–65 (1983)MATHMathSciNetGoogle Scholar
  9. 9.
    Goodman, F., Jorgensen, P.E.T.: Lie algebras of unbounded derivations. J. Funct. Anal.52, 369–384 (1983)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Harish-Chandra: Representations of a semisimple Lie group on a Banach space I. Trans. Am. Math. Soc.75, 185–243 (1953)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Haviland, E.K.: On the momentum problem for distributions in more than on dimension, I, II. Am. J. Math.57, 562–568 (1935) and58, 164–168 (1936)MATHCrossRefMathSciNetGoogle Scholar
  12. 12.
    Jorgensen, P.E.T.: Representations of differential operators on a Lie group, and conditions for a Lie algebra of operators to generate a representation of the group. J. d'Analyse Math.43, 251–288 (1983/84)MathSciNetGoogle Scholar
  13. 13.
    Jorgensen, P.E.T., Muhly, P.S.: Self-adjoint extensions satisfying the Weyl operator commutation relations. J. d'Analyse Math.37, 46–99 (1980)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Kirillov, A.A.: Unitary representations of nilpotent Lie groups. Russ. Math. Surv.17, 53–104 (1962)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Kirillov, A.A.: Elements of the theory of representations. Berlin Heidelberg New York: Springer 1976MATHGoogle Scholar
  16. 16.
    Landau, H.J.: Moments in mathematics. Proc. Appl. Math. No. 37, Am. Math. Soc., Providence 1987MATHGoogle Scholar
  17. 17.
    Nelson, E.: Analytic vectors. Ann. Math.70, 572–615 (1959)CrossRefGoogle Scholar
  18. 18.
    Nelson, E., Stinespring, W.F.: Representation of elliptic operators in an enveloping algebra. Am. J. Math.81, 547–560 (1959)MATHCrossRefMathSciNetGoogle Scholar
  19. 19.
    Powers, R.T.: Self-adjoint algebras of unbounded operators II. Trans. Am. Math. Soc.187, 261–293 (1974)MATHCrossRefMathSciNetGoogle Scholar
  20. 20.
    Richter, P.: Zur Extremalzerlegung von Zuständen. Wiss. Z. KMU Leipzig, Math.-Naturw. R.27, 293–297 (1978)Google Scholar
  21. 21.
    Samoilenko, J.S.: Spectral theory of families of self-adjoint operators. (Russian) Naukova dumka, Kiev 1984Google Scholar
  22. 22.
    Schmüdgen, K.: Positive cones in enveloping algebras. Reports Math. Phys.14, 385–404 (1978)MATHCrossRefGoogle Scholar
  23. 23.
    Schmüdgen, K.: On the Heisenberg commutation relation I. J. Funct. Anal.50, 8–49 (1983)MATHCrossRefMathSciNetGoogle Scholar
  24. 24.
    Schmüdgen, K.: Unbounded operator algebras and representation theory. Berlin: Akademie-Verlag and Basel: Birkhäuser Verlag 1990Google Scholar
  25. 25.
    Sherman, T.: Positive linear functionals on*-algebras of unbounded operators. J. Math. Anal. Appl.22, 285–318 (1968)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Taylor, M.E.: Noncommutative harmonic analysis. Math. Surv. Monogr. No. 22, Am. Math. So., Providence 1986MATHGoogle Scholar
  27. 27.
    Vershik, A.M., Karpushev, S.I.: Cohomology of groups in unitary representations, a neighbourhood of the identity and conditionally positive definite functions. (Russian) Mat. Sb.119, 521–533 (1982)MathSciNetGoogle Scholar
  28. 28.
    Warner, G.: Harmonic analysis on semi-simple Lie groups I, II. Berlin Heidelberg New York: Springer 1972Google Scholar
  29. 29.
    Werner, R.F.: Dilations of symmetric operators shifted by a unitary group. J. Funct. Anal.92, 166–176 (1990)MATHCrossRefMathSciNetGoogle Scholar
  30. 30.
    Woronowicz, S.L.: The quantum moment problem I, II. Reports Math. Phys.1, 135–145 (1970) and1, 175–183 (1970)MATHCrossRefMathSciNetGoogle Scholar
  31. 31.
    Jorgensen, P.E.T., Powers, R.T.: Positive elements in the algebra of the quantum moment problem. (Preprint) 1990Google Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Konrad Schmüdgen
    • 1
  1. 1.Sektion MathematikKarl-Marx-Universität LeipzigLeipzigFederal Republic of Germany

Personalised recommendations