Mathematische Zeitschrift

, Volume 206, Issue 1, pp 153–168 | Cite as

Shapiro's lemma and its consequences in the cohomology theory of modular Lie algebras

  • Rolf Farnsteiner
  • Helmut Strade
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berkson, A.J.: Theu-algebra of a restricted Lie algebra is Frobenius. Proc. Am. Math. Soc.15, 14–15 (1964)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Cartan, H., Eilenberg, S.: Homological algebra. Princeton: Princeton University Press 1956MATHGoogle Scholar
  3. 3.
    Chang, H.J.: Über Wittsche Lie Ringe. Abh. Math. Semin. Univ. Hamb.14, 151–184 (1941)Google Scholar
  4. 4.
    Chevalley, C., Eilenberg, S.: Cohomology theory of Lie groups and Lie algebras. Trans. Am. Math. Soc.63, 85–124 (1948)MATHCrossRefMathSciNetGoogle Scholar
  5. 5.
    Chwe, B.S.: On the commutativity of restricted Lie algebras. Proc. Am. Math. Soc.16, 547 (1965)CrossRefMathSciNetMATHGoogle Scholar
  6. 6.
    Dzhumadil'daev, A.S.: Cohomology of modular Lie algebras. Math. USSR, Sb.47, 127–143 (1984)MATHCrossRefGoogle Scholar
  7. 7.
    Faith, C., Walker, E.A.: Direct sum decompositions of injective modules. J. Algebra5, 203–221 (1967)MATHCrossRefMathSciNetGoogle Scholar
  8. 8.
    Farnsteiner, R.: On ad-semisimple Lie algebras. J. Algebra83, 510–519 (1983)MATHCrossRefMathSciNetGoogle Scholar
  9. 9.
    Farnsteiner, R.: Conditions for the commutativity of restricted Lie algebras. Commun. Algebra13, 1475–1489 (1985)MATHMathSciNetGoogle Scholar
  10. 10.
    Farnsteiner, R.: Central extensions and invariant forms of graded Lie algebras. Algebras Groups Geom.3, 431–455 (1986)MATHMathSciNetGoogle Scholar
  11. 11.
    Farnsteiner, R.: Dual space derivations andH 2(L, F) of modular Lie algebras. Can. J. Math.39, 1078–1106 (1987)MATHMathSciNetGoogle Scholar
  12. 12.
    Farnsteiner, R.: On the cohomology of associative algebras and Lie algebras. Proc. Am. Math. Soc.99, 415–420 (1987)MATHCrossRefMathSciNetGoogle Scholar
  13. 13.
    Farnsteiner, R.: On the vanishing of homology and cohomology groups of associative algebras. Trans. Am. Math. Soc.306, 651–665 (1988)MATHCrossRefMathSciNetGoogle Scholar
  14. 14.
    Farnsteiner, R.: Cohomology groups of infinite dimensional algebras. Math. Z.199, 407–423 (1988)MATHCrossRefMathSciNetGoogle Scholar
  15. 15.
    Friedlander, E.M., Parshall, B.J.: Geometry ofp-unipotent Lie algebras. J. Algebra109, 25–45 (1987)MATHCrossRefMathSciNetGoogle Scholar
  16. 16.
    Friedlander, E.M., Parshall, B.J.: Support varieties for restricted Lie algebras. Invent. Math.86, 553–562 (1986)MATHCrossRefMathSciNetGoogle Scholar
  17. 17.
    Hilton, P.J., Stammbach, U.: A course in homological algebra. (Graduate Texts, vol. 4) Berlin Heidelberg New York: Springer 1970Google Scholar
  18. 18.
    Hochschild, G.P., Serre, J.P.: Cohomology of Lie algebras. Ann. Math.57, 591–603 (1953)CrossRefMathSciNetGoogle Scholar
  19. 19.
    Hochschild, G.P.: On the cohomology groups of an associative algebra. Ann. Math.46, 58–67 (1945)CrossRefMathSciNetGoogle Scholar
  20. 20.
    Hochschild, G.P.: Cohomology of restricted Lie algebras. Am. J. Math.76, 555–580 (1954)MATHCrossRefMathSciNetGoogle Scholar
  21. 21.
    Humphreys, J.E.: Restricted Lie algebras (and beyond). Contemp. Math.13, 91–98 (1982)MATHMathSciNetGoogle Scholar
  22. 22.
    Pareigis, B.: Einige Bemerkungen über Frobenius-Erweiterungen. Math. Ann.153, 1–13 (1964)CrossRefMathSciNetGoogle Scholar
  23. 23.
    Seligman, G.B.: Modular Lie algebras. (Ergeb. Math. Grenzgeb. vol. 40), Berlin Heidelberg New York: Springer 1967MATHGoogle Scholar
  24. 24.
    Sen, C., Shen, G.: Cohomology of graded Lie algebras of Cartan type of characteristic p. Abh. Math. Semin. Univ. Hamb.57, 139–156 (1987)MATHCrossRefGoogle Scholar
  25. 25.
    Strade, H.: Representations of the Witt algebra. J. Algebra49, 595–605 (1977)MATHCrossRefMathSciNetGoogle Scholar
  26. 26.
    Strade, H.: Darstellungen Auflösbarer Lie Algebren. Math. Ann.232, 15–32 (1978)MATHCrossRefMathSciNetGoogle Scholar
  27. 27.
    Strade, H., Farnsteiner, R.: Modular Lie algebras and their representations. (Textbooks and Monographs, vol. 116), New York: Dekker 1988MATHGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Rolf Farnsteiner
    • 1
  • Helmut Strade
    • 2
  1. 1.Department of MathematicsUniversity of WisconsinMilwaukeeUSA
  2. 2.Mathematisches Seminar der Universität HamburgHamburg 13Federal Republic of Germany

Personalised recommendations