Mathematische Zeitschrift

, Volume 204, Issue 1, pp 45–67

Mock heegner points and congruent numbers

  • Paul Monsky


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Birch, B.J.: Diophantine analysis and modular functions. International Colloquium on Algebraic Geometry. Tata Institute Studies in Mathematics4, 35–42 (1968)Google Scholar
  2. 2.
    Birch, B.J.: Elliptic curves and modular functions. Symposia Mathematica, Indam Rome 1968/1969, vol. 4, pp. 27–32. London: Academic Press (1970)Google Scholar
  3. 3.
    Birch, B.J.: Weber's class invariants. Mathematika16, 283–294 (1969)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Birch, B.J., Stephens, N.M.: Computation of Heegner points. Modular forms, chap. 1. Chichester: Horwood (1984)Google Scholar
  5. 5.
    Dickson, L.E.: History of the theory of numbers, vol. 2, chap. 16 (1919)Google Scholar
  6. 6.
    Heegner, K.: Diophantische analysis und modulfunktionen. Math. Z.56, 227–253 (1952)MATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Lang, S.: Elliptic functions. Reading, Mass.: Addison-Wesley (1973)MATHGoogle Scholar
  8. 8.
    Shimura, G.: Introduction to the arithmetic theory of automorphic functions. p. 161. Princeton: Princeton University Press (1971)MATHGoogle Scholar
  9. 9.
    Stephens, N.M.: Congruence properties of congruent numbers. Bull. Lond. Math. Soc.7, 182–184 (1975)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Tunnell, J.B.: A classical diophantine problem and modular forms. Invent. Math.72, 323–334 (1983)MATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Weber, H.: Lehrbuch der Algebra,vol. 3 (1908)Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Paul Monsky
    • 1
  1. 1.Department of MathematicsBrandeis UniversityWalthamUSA

Personalised recommendations