Advertisement

Mathematische Zeitschrift

, Volume 204, Issue 1, pp 45–67 | Cite as

Mock heegner points and congruent numbers

  • Paul Monsky
Article

Keywords

Modular Form Elliptic Curve Modular Function Ideal Class Infinite Order 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Birch, B.J.: Diophantine analysis and modular functions. International Colloquium on Algebraic Geometry. Tata Institute Studies in Mathematics4, 35–42 (1968)Google Scholar
  2. 2.
    Birch, B.J.: Elliptic curves and modular functions. Symposia Mathematica, Indam Rome 1968/1969, vol. 4, pp. 27–32. London: Academic Press (1970)Google Scholar
  3. 3.
    Birch, B.J.: Weber's class invariants. Mathematika16, 283–294 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Birch, B.J., Stephens, N.M.: Computation of Heegner points. Modular forms, chap. 1. Chichester: Horwood (1984)Google Scholar
  5. 5.
    Dickson, L.E.: History of the theory of numbers, vol. 2, chap. 16 (1919)Google Scholar
  6. 6.
    Heegner, K.: Diophantische analysis und modulfunktionen. Math. Z.56, 227–253 (1952)zbMATHCrossRefMathSciNetGoogle Scholar
  7. 7.
    Lang, S.: Elliptic functions. Reading, Mass.: Addison-Wesley (1973)zbMATHGoogle Scholar
  8. 8.
    Shimura, G.: Introduction to the arithmetic theory of automorphic functions. p. 161. Princeton: Princeton University Press (1971)zbMATHGoogle Scholar
  9. 9.
    Stephens, N.M.: Congruence properties of congruent numbers. Bull. Lond. Math. Soc.7, 182–184 (1975)zbMATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Tunnell, J.B.: A classical diophantine problem and modular forms. Invent. Math.72, 323–334 (1983)zbMATHCrossRefMathSciNetGoogle Scholar
  11. 11.
    Weber, H.: Lehrbuch der Algebra,vol. 3 (1908)Google Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Paul Monsky
    • 1
  1. 1.Department of MathematicsBrandeis UniversityWalthamUSA

Personalised recommendations