Mathematische Zeitschrift

, Volume 209, Issue 1, pp 511–518 | Cite as

Asymptotic stability of Schrödinger semigroups onL 1(ℝ N )

  • Wolfgang Arendt
  • Charles J. K. Batty
  • Philippe Bénilan
Article

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arendt, W., Batty, C.J.K.: Tauberian theorems and stability of one-parameter semigroups. Trans Am. Math. Soc.306, 837–852 (1988)MATHCrossRefMathSciNetGoogle Scholar
  2. 2.
    Batty, C.J.K.: Asymptotic stability of Schrödinger semigroups: path integral methods Math. Ann. (to appear)Google Scholar
  3. 3.
    Bénilan Ph.: Opérateurs accrétifs et semi-groupes dans les espacesL p. In: Fujita, H. (ed.) Funct. Anal. and Num. Anal. Japan-France Seminar. Tokyo and Kyoto 1976Google Scholar
  4. 4.
    Brézis, H.: Analyse fonctionnelle. Paris: Masson 1963Google Scholar
  5. 5.
    Dautray, R., Lions, J.-L.: Analyse mathématique et calcul numérique, Paris: Masson 1987Google Scholar
  6. 6.
    Davies, E.B.: Heat Kernels and spectral theory. Cambridge: Cambridge University Press 1989MATHGoogle Scholar
  7. 7.
    Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Berlin Heidelber New York: Springer 1983MATHGoogle Scholar
  8. 8.
    Hayman, W. K., Kennedy, P.B.: Subharmonic Functions. London: Academic Press 1976MATHGoogle Scholar
  9. 9.
    Hempel, R., Voigt, J.: On theL p-spectrum of Schrödinger operators. J. Math. Anal. Appl.121, 138–159 (1987)MATHCrossRefMathSciNetGoogle Scholar
  10. 10.
    Kato, T.:L p-Theory of Schrödinger operators with a singular potential. In: Nagel, R., Schlotterbeck, U., Wolff, H. (eds.): Aspects of Positivity in Functional Analysis. Amsterdam: North Holland 1986Google Scholar
  11. 11.
    Lyubich, Yu.I., Vũ Quôc Phóng: Asymptotic stability of linear differential equations on Banach spaces. Stud. Math.88, 37–42 (1988)MATHGoogle Scholar
  12. 12.
    Nagel, R. (ed.) One-parameter Semigroups of Positive Operators. (Lect. Notes Math., vol. 1184) Berlin Heidelberg New York: SpringerGoogle Scholar
  13. 13.
    Reed, M., Simon, B.: Methods of Modern Mathematical Physics, Vol. IV. London: Academic Press 1978Google Scholar
  14. 14.
    Simon, B.: Schrödinger semigroups. Bull. Am. Math. Soc.7, 447–526 (1982)MATHCrossRefGoogle Scholar
  15. 15.
    Voigt, J.: Absorption semigroups, their generators and Schrödinger semigroups. J. Oper. Theory20, 117–131 (1988)MATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Wolfgang Arendt
    • 1
  • Charles J. K. Batty
    • 1
  • Philippe Bénilan
    • 1
  1. 1.Equipe de Mathématiques U.A. CNRS 741Université de Franche-ComtéBesançon CedexFrance

Personalised recommendations