Mathematische Zeitschrift

, Volume 209, Issue 1, pp 55–66 | Cite as

A non-commutative central limit theorem

  • Roland Speicher


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [AFL] Accardi, L., Frigerio, A., Lewis, J.T.: Quantum Stochastic Processes. Publ. RIMS,18, 97–133 (1982)MATHMathSciNetGoogle Scholar
  2. [AsI] Askey, R., Ismail, M.: Recurrence relations, continued fractions and orthogonal polynomials. Mem. AMS, vol. 49, no. 300, 1984Google Scholar
  3. [ASW] Accardi, L., Schürmann, M., Waldenfels, W. v.: Quantum independent increment processes on superalgebras. Math. Z.198, 451–477 (1988)MATHCrossRefMathSciNetGoogle Scholar
  4. [Bau] Bauer, H.: Wahrscheinlichkeitstheorie und Grundzüge der Maßtheorie. 2nd edn. Berlin: Walter de Gruyter 1974MATHGoogle Scholar
  5. [BrR] Bratteli, O., Robinson, D.W.: Operator Algebras and Quantum Statistical Mechanics, Il. Berlin Heidelberg New York: Springer 1981Google Scholar
  6. [BSp1] Bożejko, M., Speicher, R.: An example of a generalized Brownian motion. Commun. Math. Phys.137, 519–531 (1991)CrossRefMATHGoogle Scholar
  7. [BSp2] Bożejko, M., Speicher, R.: An example of a generalized Brownian motion, II. Heidelberg 1990 (preprint)Google Scholar
  8. [CuH] Cushen, C.D., Hudson, R.L.: A quantum-mechanical central limit theorem. J. Appl. Probab.8, 454–469 (1971)MATHCrossRefMathSciNetGoogle Scholar
  9. [Cun] Cuntz, J.: SimpleC *-algebras generated by isometries. Commun. Math. Phys.57, 173–185 (1977)MATHCrossRefMathSciNetGoogle Scholar
  10. [Eva] Evans, D.E.: OnO n, Publ. RIMS,16, 915–927 (1980)MATHCrossRefGoogle Scholar
  11. [GvW] Giri, N., Waldenfels, W. v.: An algebraic version of the central limit theorem. Z. Wahrscheinlichkeitstheorie verw. Gebiete42, 129–134 (1978)MATHCrossRefGoogle Scholar
  12. [Gre] Greenberg, O.W.:Q-mutators and violations of statistics. University of Maryland 1990 (preprint 91-034)Google Scholar
  13. [HuP] Hudson, R.L., Parthasarathy, K.R.: Unification of Fermion and Boson stochastic calculus: Commun. Math. Phys.104, 457–470 (1986)MATHCrossRefMathSciNetGoogle Scholar
  14. [Küm1] Kümmerer, B.: Survey on a theory of non-commutative stationary Markov processes. In: Accardi, L., Waldenfels, W. v. (eds) Quantum Probability and Applications, III. Proc. Oberwolfach 1987. (Lect. Notes Math., vol. 1303, pp. 154–182) Berlin Heidelberg New York: Springer 1988CrossRefGoogle Scholar
  15. [Küm2] Kümmerer, B.: Markov dilations and non-commutative Poisson processes (preprint)Google Scholar
  16. [LiP] Lindsay, J.M., Parthasarathy, K.R.: Cohomology of Power Sets with Applications in Quantum Probability. Commun. Math. Phys.124, 337–364 (1989)MATHCrossRefMathSciNetGoogle Scholar
  17. [Par] Parthasarathy, K.R.: Azéma Martingales and Quantum Stochastic Calculus. (preprint 1989)Google Scholar
  18. [Sch1] Schürmann, M.: White Noises on Involutive Bialgebras. Heidelberg 1990 (preprint)Google Scholar
  19. [Sch2] Schürmann, M.: Quantumq-White Noise and a Central Limit Theorem. Heidelberg 1990 (preprint)Google Scholar
  20. [Spe] Speicher, R.: A New Example of ‘Independence’ and ‘White Noise’. Probab. Theory Relat. Fields84, 141–159 (1990)MATHCrossRefMathSciNetGoogle Scholar
  21. [Voi1] Voiculescu, D.: Symmetries of some reduced free productC *-algebras. In: Araki, H., Moore, C.C., Stratila, S., Voiculescu, D. (eds.) Operator Algebras and their Connection with Topology and Ergodic Theory. Proc. Busteni, Romania, 1983 (Lect. Notes Math., vol. 1132, pp. 556–588) Berlin Heidelberg New York: Springer 1985CrossRefGoogle Scholar
  22. [Voi2] Voiculescu, D.: Addition of certain non-commuting random variables. J. Funct. Anal.66, 323–346 (1986)MATHCrossRefMathSciNetGoogle Scholar
  23. [vWa] Waldenfels, W. v.: An algebraic central limit theorem in the anti-commuting case. Z. Wahrscheinlichkeitstheorie verw. Gebiete42, 135–140 (1978)MATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • Roland Speicher
    • 1
  1. 1.Institut für Angewandte MathematikUniversität HeidelbergHeidelbergFederal Republic of Germany

Personalised recommendations