Discrete & Computational Geometry

, Volume 14, Issue 4, pp 365–384 | Cite as

On geometric optimization with few violated constraints

  • J. Matoušek
Article

Abstract

We investigate the problem of finding the best solution satisfying all butk of the given constraints, for an abstract class of optimization problems introduced by Sharir and Welzl—the so-calledLP-type problems. We give a general algorithm and discuss its efficient implementations for specific geometric problems. For instance for the problem of computing the smallest circle enclosing all butk of the givenn points in the plane, we obtain anO(n logn+k3nε) algorithm; this improves previous results fork small compared withn but moderately growing. We also establish some results concerning general properties ofLP-type problems.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Agarwal, M. de Berg, J. Matoušek, and O. Schwarzkopf. Constructing levels in arrangements and higher-order Voronoi diagrams.Proc. 10th Ann. ACM Symp. on Computational Geometry, pp. 67–75, 1994.Google Scholar
  2. 2.
    P. K. Agarwal and J. Matoušek. Dynamic half-space range reporting and its applications.Algorithmica, 13:325–345, 1995.MATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    A. Aggarwal, H. Imai, N. Katoh, and S. Suri. Findingk points with minimum diameter and related problems.J. Algorithms, 12:38–56, 1991.MATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    N. Amenta. Helly theorems and generalized linear programming.Discrete Comput. Geom., 12:241–261, 1994.MATHMathSciNetCrossRefGoogle Scholar
  5. 5.
    B. Aronov, B. Chazelle, H. Edelsbrunner, L. J. Guibas, M. Sharir, and R. Wenger. Points and triangles in the plane and halving planes in space.Discrete Comput. Geom., 6:435–442, 1991.MATHMathSciNetCrossRefGoogle Scholar
  6. 6.
    B. Chazelle and J. Matoušek. On linear-time deterministic algorithms for optimization problems in fixed dimension.Proc. 4th ACM-SIAM Symp. on Discrete Algorithms, pp. 281–290, 1993.Google Scholar
  7. 7.
    K. L. Clarkson. New applications of random sampling in computational geometry.Discrete Comput. Geom., 2:195–222, 1987.MATHMathSciNetCrossRefGoogle Scholar
  8. 8.
    K. L. Clarkson. A Las Vegas algorithm for linear programming when the dimension is small.Proc. 29th Ann. IEEE Symp. on Foundations of Computer Science, pp. 452–456, 1988.Google Scholar
  9. 9.
    K. L. Clarkson. A bound on local minima of arrangements that implies the upper bound theorem. Manuscript, 1992.Google Scholar
  10. 10.
    K. L. Clarkson and P. W. Shor. Application of random sampling in computational geometry, II.Discrete Comput. Geom., 4:387–421, 1989.MATHMathSciNetCrossRefGoogle Scholar
  11. 11.
    R. Cole, M. Sharir, and C. K. Yap. Onk-hulls and related problems.SIAM J. Comput., 16:61–77, 1987.MATHMathSciNetCrossRefGoogle Scholar
  12. 12.
    A. Datta, H.-P. Lenhof, C. Schwarz, and M. Smid. Static and dynamic algorithms fork-point clustering problems.Proc. 3rd Workshop on Algorithms and Data Structures. Lecture Notes in Computer Science, vol. 709, pp. 265–276. Springer-Verlag, Berlin, 1993.CrossRefGoogle Scholar
  13. 13.
    T. Dey and H. Edelsbrunner: Counting triangle crossings and halving planes.Discrete Comput. Geom., 12:281–289, 1994.MATHMathSciNetCrossRefGoogle Scholar
  14. 14.
    H. Edelsbrunner and E. P. Mücke. Simulation of simplicity: A technique to cope with degenerate cases in geometric algorithms.ACM Trans. Graphics 9:66–104, 1990.MATHCrossRefGoogle Scholar
  15. 15.
    A. Efrat, M. Lindenbaum, and M. Sharir, Finding maximally consistent sets of halfspaces.Proc. 5th Canad. Conf. on Computational Geometry, pp. 432–436, Waterloo, Ontario, 1993.Google Scholar
  16. 16.
    A. Efrat, M. Sharir, and A. Ziv. Computing the smallestk-enclosing circle and related problems.Proc. 3rd Workshop on Algorithms and Data Structures. Lecture Notes in Computer Science, vol. 709, pp. 325–336. Springer-Verlag, Berlin, 1993.CrossRefGoogle Scholar
  17. 17.
    I. Emiris and J. Canny. An efficient approach to removing geometric degeneracies.Proc. 8th Ann. ACM Symp. on Computational Geometry, pp. 74–82, 1992.Google Scholar
  18. 18.
    D. Eppstein and J. Erickson. Iterated nearest neighbors and finding minimal polytopes.Proc. 4th ACM-SIAM Symp. on Discrete Algorithms, pp. 64–73, 1993.Google Scholar
  19. 19.
    H. Everett, J.-M. Robert, and M. van Kreveld. An optimal algorithm for the (≤k)-levels, with applications to separation and transversal problems.Proc. 9th Ann. ACM Symp. on Computational Geometry, pp. 38–46, 1993.Google Scholar
  20. 20.
    A. Gajentaan and M. H. Overmars.n 2-hard problems in computational geometry. Report RUU-CS-93-15, Department of Computer Science, Utrecht University, Utrecht, April 1993.Google Scholar
  21. 21.
    B. Gärtner. A subexponential algorithm for abstract optimization problems.Proc. 33rd Ann. IEEE Symp. on Foundations of Computer Science, pp. 464–472, 1992.Google Scholar
  22. 22.
    D. S. Johnson and F. P. Preparata. The densest hemisphere problem.Theoret. Comput. Sci., 6:93–107, 1978.MATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    G. Kalai, A subexponential randomized simplex algorithm.Proc. 24th Ann. ACM Symp. on Theory of Computing, pp. 475–482, 1992.Google Scholar
  24. 24.
    J. Matoušek, Linear optimization queries.J. Algorithms, 14:432–448, 1993. The results combined with the results of O. Schwarzkopf also appear inProc. 8th ACM Symp. on Computational Geometry, pp. 16–25, 1992.MATHMathSciNetCrossRefGoogle Scholar
  25. 25.
    J. Matoušek, On enclosingk points by a circle.Inform. Process. Lett., 53:217–221, 1995.MATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    J. Matoušek, M. Sharir, and E. Welzl. A subexponential bound for linear programming.Proc. 8th Ann. ACM Symp. on Computational Geometry, pp. 1–8, 1992. Also to appear inAlgorithmica.Google Scholar
  27. 27.
    N. Megiddo. The weighted Euclidean 1-center problem.Math. Oper. Res., 8(4):498–504, 1983.MATHMathSciNetCrossRefGoogle Scholar
  28. 28.
    K. Mulmuley. On levels in arrangements and Voronoi diagrams.Discrete Comput. Geom., 6:307–338, 1991.MATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    K. Mulmuley. Dehn-Sommerville relations, upper bound theorem, and levels in arrangements.Proc. 9th Ann. ACM Sump. on Computational Geometry, pp. 240–246, 1993.Google Scholar
  30. 30.
    M. H. Overmars and J. van Leeuwen. Maintenance of configurations in the plane.J. Comput. System Sci., 23:166–204, 1981.MATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    R. Seidel. The nature and meaning of perturbations in geometric computing.Proc. 11th Symp. on Theoretical Aspects of Computer Science (STACS). Lecture Notes in Computer Science. Springer-Verlag, Berlin, 1994.Google Scholar
  32. 32.
    M. Sharir and E. Welzl. A combinatorial bound for linear programming and related problems.Proc. 1992 Symp. on Theoretical Aspects of Computer Science. Lecture Notes in Computer Science, vol. 577, pp 569–579. Springer-Verlag, Berlin, 1992.Google Scholar
  33. 33.
    C. K. Yap. A geometric consistency theorem for a symbolic perturbation scheme.J. Comput. System Sci. 40:2–18, 1990.MATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer-Verlag New York Inc. 1995

Authors and Affiliations

  • J. Matoušek
    • 1
  1. 1.Department of Applied MathematicsCharles UniversityPraha 1Czech Republic

Personalised recommendations